
Improving Multi Expression Programming

Using Reuse-Based Evaluation

Wei Deng1 and Pei He1,2

1 School of Computer and Communication Engineering
Changsha University of Science and Technology

Changsha 410114, P.R. China
76995958@qq.com

2 Key Laboratory of High Confidence Software Technologies(Peking University)
Ministry of Education, Beijing 100871, P.R. China

bk he@126.com

Abstract. Multi expression programming is a linear genetic program-
ming that dynamically determines its output from a series of genes of
the chromosome. It works on a fixed-length individual, but gives rise
to the complexity of the decoding process and fitness computations. To
solve this problem, we proposed an improved algorithm that can speed
up individual assessments through reuse analysis of evaluations. The ex-
perimental result shows that the present approach performs quite well
on the considered problems.

Keywords: Multi Expression Programming, Linear Genetic Program-
ming, Fitness Computations, Reuse Analysis of Evaluations.

1 Introduction

Multi Expression Programming (MEP) as a linear genetic programming ap-
proach is a Genetic Programming variant first proposed in 2002 by Oltean.M
and Dumitrescu.D[1-7]. Compared to other variants of Genetic Programming, a
unique feature of MEP is its ability of storing multiple solutions of problem in a
single chromosome[9]. In MEP each chromosome contains a number of expres-
sions which, called genes, consist of strings of variable length, and the number
of genes per chromosome is constant. These features make it possible to greatly
increase the probability of the problem solution [8-10]. So we can effectively solve
complex problems. Now multi expression programming has been widely used in
many fields, such as classification problems, stock market forecast, TSP, digital
circuit design, and so on[11-13].

In this paper, we will present an improved algorithm for efficiently assessing
the individuals of MEP. The idea lies in the fact that the fitness can be quickly
computed based on encoded chromosome, and any genes inherited from parents
dont be evaluated once again.

The paper is organized as follows. In section 2, the basic principle of the
multi expression programming is presented. The improved algorithm in MEP is

Z. Li et al. (Eds.): ISICA 2012, CCIS 316, pp. 292–299, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Improving Multi Expression Programming Using Reuse-Based Evaluation 293

described in section 3. In section 4, we will perform several numerical experi-
ments. Section 5 concludes the paper.

2 Multi Expression Programming

2.1 MEP Algorithm

Standard MEP algorithm starts by creating a random population of individuals.
The following steps are repeated until a problem is solved. Two parents are
selected in a selection procedure[11]. Then the parents are recombined in order
to generate new offspring by crossover. Finally the offspring are considered for
mutation.

In MEP each gene encodes a terminal or a function whose arguments always
have indices of lower values than the position of that function in the chromosome.
In the selection process, the classical MEP will decode each gene in the popu-
lation and assign it a fitness value according to how well it solves the problem.
Usually the best solution is chosen for fitness assignment of the chromosome[9].
Create new individuals based on encoded genes by crossover and mutation. Stan-
dard MEP algorithm is described in detail as follows.

2.2 Encoding Principle

A chromosome of MEP consists of several genes. Its length is equal to the number
of genes. Each gene represented by strings of a variable length is composed of
function operator, terminal symbol and gene sequence number. MEP encoding
rules are simple. The first symbol of the chromosome must be a terminal symbol,
and function arguments of the gene must be smaller than the current genetic
index.

For example, let F = {∗,+, S} be the set of function symbols where the
symbol S represents the sin function, and the terminal set be T = {x, y}. Suppose
a chromosome contains 6 genes, an example of chromosome using the sets F and
T will take the form of Table 1.

Table 1. Gene encoding of a chromosome: the first row is gene indices, the second is
the corresponding genes encoding

1 2 3 4 5 6

x ∗1, 1 y ∗1, 3 +2, 3 S5

2.3 Decoding Principle and Fitness Assignment

In the evaluation process, the first step is to decode genes of the chromosome.
For instance, in the previous example each gene would be decoded to a simple
expression. These expressions are shown in Table 2.

294 W. Deng and P. He

Table 2. Gene encoding of a chromosome: the first row is gene indices, the second is
the corresponding genes encoding

1 2 3 4 5 6

x x ∗ x y x ∗ y x ∗ x+ y sin(x ∗ x+ y)

In general, phenotypic decoding process can be depicted based on Table 1 as
follows. Genes 1 and 3 decode a simple expression by a single terminal symbol.
Genes 2, 4, 5 and 6 include function symbol and gene indices, which, say gene
2, indicates the operation of multiplication on the operands gene1 and gene
1 of the chromosome. Therefore the translation of a gene into an expression
involves complicate substitutions among sub expressions and gene indices. In
this paper, we proposed an improved algorithm which does not need decoding,
but evaluating genes by the encoded chromosome.

In MEP algorithm, the different fitness function has a different assessment
effect for the gene. One of the most popular forms of fitness functions given
below is the so called absolute error[11]:

fitness(Ei) =

N∑

j=1

|Oj,i − wj | (1)

Where Oj,i is the value of the expression Ei on the jth sample data and Wi

corresponding target result. The fitness of the chromosome fitness(C) is equal to
the lowest fitness of the genes in a single chromosome[9]. This fitness is widely
used for solving regression problems.

fitness(C) = minfi(Ei) (2)

2.4 Genetic Operators

The genetic operators used in the MEP algorithm are crossover and mutation.
Since genetic operators preserve the chromosome structure, all the offspring are
syntactically correct expressions[1].

Crossover: Two parents are selected randomly and recombined by crossover[1].
Cross point is also randomly generated. In this paper we consider one-point
recombination.

Mutation: Terminal symbol, function symbol and gene index may be used to
mutate the gene. In order to prevent the chromosome structure from damaging,
the first gene must be encoded to a terminal symbol. If the current gene changes
into a function symbol, the function arguments must be function pointers to the
previous genes.

3 Improved MEP Algorithm

In order to evaluate chromosomes, we must translate each gene into an expres-
sion, and compute function and fitness value of the decoded genes. On the one

Improving Multi Expression Programming Using Reuse-Based Evaluation 295

hand, translation of expression consumes tremendous time and space resources;
on the other hand the evaluation process will recalculate the same gene seg-
ments when the current gene contains gene indices. As a large number of the
genes contains function pointer, this way will affect the evolution efficiency. So
this paper presents an improved MEP algorithm which quickly computes the
value of the expression based on the encoded genes, and don’t need decoding
genes. Some of the genes have not been modified by crossover and mutation,
but their fitness will still be recalculated in a novel generation. So this paper
proposed another improved algorithm which would preserve the primary fitness
value of the unmodified gene segments, thus reducing the number of repeated
computation. These two improved algorithm will be applied in MEP to solve
practical problems.

The improved algorithm is described in MATLAB language as follows:

function chro_fit = evaluate(chro, flag,x_value)

% Input arguments: a chromosome, modification flag of genes and

sample data

% Output arguments: fitness value of the chromosome

% Global variables are initialized in the begin of evolutionary

process, but not

% in this m file. This is the m file of the evaluation.

% y_value and gene_fit is initialized to null, and node_num

is initialized to 0

global y_value;

% output values of the parents

global gene_fit;

% fitness values of the parents

global node_num;

% the number of calculation nodes

for i = 1:length(chro)

% ~ flag (i) = = 1 means that the current gene has not been

modified.

if(gene_fit &~flag(i))

% if gene_fit is empty, it represents the first generation

continue;

% ~flag(i) == 1 and gene_fit is not empty then continue;

end

node_num = node_num + 1;

% the number of calculation nodes plus one

gene = chro(i);

if(length(deblank(gene))<2)

% the current gene is a terminal symbol

y_value(i) = x_value(argument_index)

else

% the current gene contains function symbol

% function symbol a binocular operator

296 W. Deng and P. He

if(gene(1)is a binocular operator)

y_value(i)=bin_operator(y_value((gene(function_pointer1))),

y_value((gene(function_pointer2));

else

% function symbol a unary operator

y_value(i) = unary_operator

(y_value(gene(function_pointer1)));

end

end

gene_fit = sum(abs(y_value (i)C x_value(sample_index)))

% gene fitness value

end

chro_fit = min(gene_fit)

% chromosome fitness value

The parameter flag is initialized to the value 0. Its value is modified only in
genetic operation. Argument flag with the value 0 indicates that the gene has
not been modified by the crossover and mutation, Otherwise the flag would be
set to 1. If the gene contains function pointers and is not modified, we also need
to consider whether the referred expression is modified. If the expressions that
are pointed to by the function pointer have been modified, the gene flag should
also be set to 1. In the process of evolution the number of calculation nodes is
based on the flag. A node represents a gene.

The improved algorithm directly computes a function by scanning an encoded
gene. If the gene is a terminal symbol, the function value is the argument sam-
ple data. If the gene contains function symbol, the result is calculated by the
gene value of the function pointer. The standard MEP algorithm requires the
translation of expressions to evaluate genes. But the improved MEP algorithm
performs all arithmetic based on operators, and function pointer. In addition,
unmodified genes dont participate in calculation except the first generation. The
two improved ideas raise evolution efficiency.

4 Experiments and Analysis

In this section, several experiments with comparisons of standard MEP and the
improved algorithm are performed on two well-known regression problems. The
two functions to be examined are y4+ y3+ y2+ y and sin(y4+ y2), respectively.
We will compare the performance of these two methods in the time complexity
and the number of calculation nodes by running them on the same problems
based on the same 20 sample data for 50 times.

Fig. 1 makes a comparison between the standard and the improved MEP
algorithm in the time complexity and the number of calculation nodes. Evolution
parameters are shown in Table 3.

In the first diagram of Fig.1, abscissa axis represents the number of evolution,
and the ordinate is the running time. It shows that the average evolution time of
the improved MEP algorithm is about 9 times less than the standard algorithm.

Improving Multi Expression Programming Using Reuse-Based Evaluation 297

Table 3. The experimental parameters of the two regression problems

Function Set {+, ∗, S}
Terminal Set {y}

Number of Chromosomes 20

Number of Genes 10

Number of Generations 1000

Crossover Probability 0.9

Mutation Probability 0.5

Fig. 1. Comparison of the two methods in solving y4 + y3 + y2 + y

Fig. 2. Comparison of the two methods in solving sin(y4 + y2)

298 W. Deng and P. He

In the second diagram of Fig.1, abscissa axis is also the number of evolution,
but the ordinate represents the calculated number of genes in the assessment
process. The experimental results show that the number of calculation nodes
by the improved algorithm was less than the traditional approach during the
evaluation phase. The number of calculation nodes is based on the third part of
the mentioned flag to decide whether to evaluate the gene.

In order to verify the validity of the improved algorithm, we conducted several
experiments to test. The performance comparison of the other function sin(y4+
y2) is given in the below Fig. 2.

The experimental result shows that the evolution efficiency of the improved
algorithm is significantly higher than the standard. Moreover owing to that un-
modified genes neednt be recalculated, the number of genes calculated decreases
in the evolutionary process.

5 Conclusion

This paper analyzes the evaluation deficiency of standard MEP algorithmand put
forward a method for sharing expression values among the same gene segment.
Thus it becomes unnecessary to translate genes to phenotypic expressions in the
evaluation stage. Furthermore, regarding evaluations of chromosomes, any genes
inherited from parents neednt be recalculated. The two improved ideals greatly
reduced the program running time and space complexity. Experimental results
show that the evolution efficiency of the improved algorithm is much better than
standard MEP.

Acknowledgment. This work was supported by the National Natural Science
Foundation of China (Grant NO. 61170199), and the Scientific Research Fund
of Education Department of Hunan Province, China (Grant NO. 11A004).

References

1. Oltean, M., Grosan, C., Diosan, L., Mihaila, C.: Genetic Programming With Linear
Representation a Survey. WSPC/INSTRUCTION FILE (2008)

2. O’Nell, M., Vanneschi, L., Gustafson, S., Banzhaf, W.: Open Issues in Genetic
Programming. Genetic Programming and Evolvable Machines 11, 339–363 (2010)

3. He, P., Kang, L., Fu, M.: Formality Based Genetic Programming. In: IEEE
Congress on Evolutionary Computation, Hong Kong, pp. 4080–4087 (2008)

4. Koza, J.R.: Genetic Programming: On the Programming of Computers by Means
of Natural Selection. MIT Press (1992)

5. Tsakonas, A.: A comparision of classification accuracy of four genetic
programming-evolved intelligent structures. Informatin Sciences 176, 691–724
(2006)

6. Koza, J.R., Poli, R.: Genetic programming. In: Burke, E.K., Kendall, G. (eds.)
Search Methodologies: Introductory Tutorials in Optimization and Decision Sup-
port Techniques, ch. 5. Springer (2005)

Improving Multi Expression Programming Using Reuse-Based Evaluation 299

7. Oltean, M., Grosan, C.: A Comparison of Several Linear Genetic Programming
Techniques. Complex Systems 14, 285–313 (2003)

8. He, P., Johnson, C.G., Wang, H.: Modeling grammatical evolution by automaton.
Science China/Information Sciences 54(12), 2544–2553 (2011)

9. National Center for Biotechnology Information, http://www.ncbi.nlm.nih.gov;
Oltean, M., Dumitrescu, D.: Multi expression programming, technical report, UBB-
01-2002, Babes-Bolyai University, Cluj-Napoca, Romania,
http://www.mep.cs.ubbcluj.ro

10. Chen, Y.H., Jia, G., Xiu, L.: Design of Flexible Neural Trees using Multi Expression
Programming. In: Proceeding of Chinese Control and Decision Conference, vol. 1,
pp. 1429–1434 (2008)

11. Oltean, M., Grosan, C.: Evolving Digital Circuits using Multi Expression Program-
ming. In: 2004 NASA/DoD Conference on Evolvable Hardware, pp. 87–94. IEEE
Computer Science, Washington (2004)

12. Wang, Y., Yang, B., Zhao, X.: Countour Registration Based on Multi-Expression
Programming and the Improved ICP. IEEE (2009)

13. Cattani, P.T., Johnson, C.G.: ME-CGP: Multi Expression Cartesian Genetic Pro-
gramming. In: IEEE Congress on Evolutionary Computation, pp. 1–6 (2010)

http://www.ncbi.nlm.nih.gov
http://www.mep.cs.ubbcluj.ro

	Improving Multi Expression Programming Using Reuse-Based Evaluation
	Introduction
	Multi Expression Programming
	MEP Algorithm
	Encoding Principle
	Decoding Principle and Fitness Assignment
	Genetic Operators

	Improved MEP Algorithm
	Experiments and Analysis
	Conclusion
	References

