Chapter 49
Multi-Expression Based Gene Expression
Programming

Wei Deng, Pei He and Zhi Huang

Abstract Among the variants of GP, GEP stands out for its simplicity of encoding
method and MEP catches our attention for its multi-expression capability. In this
paper, a novel GP variant-MGEP (Multi-expression based Gene Expression Pro-
gramming) is proposed to combine these two approaches. The new method pre-
serves the GEP structure, however unlike the traditional GEP, its genes, like those
of MEP, can be disassembled into many expressions. Therefore in MGEP, the
traditional GEP gene can contain multiple solutions for a problem. The experi-
mental result shows the MGEP is more effective than the traditional GEP and MEP
in solving problems.

Keywords Genetic programming - Gene expression programming - Multi
expression programming

49.1 Introduction

Genetic programming is a new branch of the evolutionary algorithm, early GP is
organized with structures of tree-based, and operated directly on the tree, which
leads to the low efficiency of function mining. To solve this problem, linear genetic
encoding and graphic genetic encoding methods have been proposed, such as
linear genetic programming (LGP), multi expression programming (MEP) and

W. Deng (PX) - P. He - Z. Huang

School of Computer and Communication Engineering, Changsha University of Science and
Technology, Changsha 410114, China

e-mail: 76995958 @qq.com

P. He
Guangxi Key Laboratory of Trusted Software, Guilin University of Electronic Technology,
Guilin 541004, China

Z. Sun and Z. Deng (eds.), Proceedings of 2013 Chinese Intelligent Automation 439
Conference, Lecture Notes in Electrical Engineering 256,
DOI: 10.1007/978-3-642-38466-0_49, © Springer-Verlag Berlin Heidelberg 2013

440 W. Deng et al.

gene expression programming (GEP). These algorithms nowadays have been
applied in a wide range of real-word problems.

Genetic Expression Programming (GEP) algorithm is a new member of the
genetic family, which is widely used in knowledge discovery. GEP integrating the
GA and GP advantages uses simple encoding method to solve complex problems.
GEP still exist some problems that evolutionary generation is too large or unable
to obtain optimal results. MEP (Multi Expression Programming) is a GP variant. A
unique MEP feature is its ability of encoding multiple solutions for a problem [1].
But the complexity of the MEP decoding process is higher than the other linear
genetic programming. In this paper, we propose a novel algorithm MGEP which
combines GEP algorithm with MEP (Multi Expression Programming). MGEP
employs multi expression features used in GEP. The improved algorithm can
achieve higher efficiency of function mining.

This paper realized a new algorithm and related genetic operator, and analyzed
the advantages of MGEP algorithm in the usage of expression space compared
with the traditional GEP. The algorithm achieved good results for solving specific
problems. The Experimental results show that when compared with the standard
GEP, the average evolution generation of MGEP is 1.1-5.3 % of the traditional
GEP and 7-18 % of MEP.

The paper is organized as follows. The backgrounds of the GEP and the MEP
are presented in Sect. 49.2. The MGEP algorithm is described in Sect. 49.3. In
Sect. 49.4, we will perform several numerical experiments to compare the MGEP,
the GEP and the MEP algorithm. Section 49.5 concludes the paper.

49.2 Background
49.2.1 MEP and GEP

GEP and MEP are automated method for creating computer programs. GEP as a
linear chromosome is composed of genes containing terminal and function sym-
bols. Search operators are operated on a GEP gene to produce new individuals,
such as crossover, mutation and transposition. MEP chromosomes are composed
of the number of the genes which are substrings of variable length. A unique MEP
feature is the ability of choosing the best gene provide the output for the chro-
mosome. This is different from other GP techniques which employed a fixed gene
for output. In MEP the offspring obtained by crossover and mutation. These two
techniques of the GP variant have been applied in various fields.

GEP Representation: A GEP gene is composed of head and tail. The head
contains function or terminal symbols, but the tail can only contain terminal
symbols. For each problem, the length of the head (denoted h) is chosen by the
user, and the length of the tail (denoted t) is evaluated by formula 49.1, where n is
the maximum number of the function arguments in the function set.

49 Multi-Expression Based Gene Expression Programming 441

t=hx(n—1)+1 (49.1)

Let us consider a set of function symbols F = {+, %, /, S} and a set of ter-
minal symbols T = {a, b}, where the symbol S stands for the sin operator. In this
case n = 2. If we choose h = 7, then we get t = 8, so the length of the gene is
7 + 8 = 15. Such a gene is given below: C = +/ % aSb + bbababab. GEP is
encoded by a fixed length string called K-expression, and the individual phenotype
is an expression tree (ET). A K-expression can be translated into an expression tree
(ET) by breadth-first parsing. The ET based on the string C is created in Fig. 49.1.
The expression encoded by the gene C is: E; = a/sin(b) + b x (b + a). The last
five elements of this gene are not used. Usually, a GEP gene is not entirely used for
phenotypic transcription.

MEP Representation: A MEP gene encodes a terminal or a function symbol. If
a gene contains a function symbol, its arguments must point to gene indices of
lower values than the position of the function itself. And the first symbol of the
chromosome must be a terminal symbol.

Consider the set of functions: F= {x, +, S}, and the set of terminals
T = {a, b}. The numbers on the left stand for gene index and the right is the
encoded gene. An example of a chromosome C using the sets F and T is given in
Fig. 49.2a. Translation of the MEP chromosome into expressions is done top-
down. A terminal symbol decodes a simple expression. A function symbol
translates into a complex expression by connecting the operands with the gene
indices which would be substituted for the decoded expression. The chromosome
in the previous example would be decoded into expressions in Fig. 49.2b.

49.2.2 MEP and GEP Related Literature

GEP as a new genetic algorithm shows its superior performance in many fields,
especially the outstanding performance in the area of data mining. Nowadays,
more and more researches are focusing on GEP all over the world, mainly
including the basic principle of GEP and its application.

Some foreign literature reviewed genetic programming [2-5]. We are reviewing
the main GP variant with linear representation in paper [2], which provides a

Fig. 49.1 An expression tree e

encoding the function
a/sin(b) + b x* (b+a)

442 W. Deng et al.

Fig. 49.2 MEP encoding (a) (b)

and decoding way of the gene I'b E.:b

Cab ' v
2:sin(1) E,: sin(b)
3:a Ej:a

4:/3,2 decoding E,: a/sin(b)

5:+1,3 Es5:b+a
6: *1,5 E¢: b*(b+a)
7 +4.6 E;: a/sin(b)+b*(b+a)

complete description for each method. In paper [3] the author outlines some of the
challenges and open issues that face researchers and practitioners of GP. The first
article of GEP was published by Portugal Candida Ferreira in 2001. Then she
wrote many papers and published GEP monographs [6-9]. In paper [9] a hybrid
evolutionary technique is proposed for data mining tasks, which combines the
Clone Selection Principle with GEP.

MEDP has a flexible encoding method and the ability to provide abundant rep-
resentations. MEP was reviewed systematically in literature [9-11]. All aspects of
the MEP are summarized in paper [9]. MEP is widely used in many fields [12, 13].
In paper [12] authors proposed a way of structuring a CGP algorithm to make use
of the multiple phenotypes which are implicitly encoded in a genome string.

49.2.3 MEP and GEP Weakness

Generally,the more genes in a GEP chromosome,the higher sucess rate of GEP.
However, if the genes are over a certain value, the success rate will decrease. This
situation occurs in that GEP uses a complex chromosome to encode a less complex
expression. If the target expression is short and the head length is large, the
majority of individual is unused. This problem usually arises in evolutionary
process when GEP employs chromosome with a fixed length.

There are problems where the complexity of the MEP decoding process is
higher than the complexity of the GE, GEP, and LGP decoding processes. This
situation usually arises when the set of training data is not a priori known [2].

Consider a GEP gene, as long as we read a K expression from the different head
symbols, we can build more expression trees. Owing to the breadth and depth of
the same symbols in other expression tree are different, thus the corresponding
expressions are not only decomposed by standard GEP expression. Based on this
idea, we proposed a novel technique MGEP which combines the advantages of the
GEP with the MEP features. The new algorithm would build up more expression
trees for a GEP gene. And compared with traditional MEP, MGEP has a diversity
of the gene. The MGEP with these two characteristics would overcome the
weakness of MEP and GEP.

49 Multi-Expression Based Gene Expression Programming 443

49.3 MGEP Model
49.3.1 MGEP Initialization

MGERP initialization is the same as the GEP. MGEP chromosomes are initialized
randomly, but they must obey two rules that a gene contains two parts of the
symbols and the tail of the gene must be composed of terminal symbols.

49.3.2 MGEP Representation

The evolutionary process of the MGEP algorithm is similar to the traditional
genetic algorithm, namely: initial population — selection — crossover — varia-
tion — new population — selection. MGEP encoding way is identical with the
standard GEP. But the novel algorithm would decode into multiple sub-expres-
sions by a K-expression. MGEP algorithm as the standard GEP algorithm starts by
creating a random population of individuals. To realize our aim, we start by
reading the K-expression from the first head character to build the first expression
tree, which is totally the same with the GEP. Then, we continue reading the
K-expression from the second head character to establish another expression tree.
Repeat reading the head characters until the end of the head. Don’t consider the
single node of the sub-expression tree which called the dead gene.

A MGEP gene contains multiple solutions for a problem. Compared with the
MEP algorithm, MGEP have more diverse individuals in the population. Because
several MEP genes are disjoined or combined by the sub-expressions, but MGEP
gene can decode into diversity of genes. Consider the referred gene C in the second
section. We utilize the MGEP algorithm to build multiple expression trees based
on the gene C = 4/ *aSb + bbababab. The decomposition of the first sub-
expression tree is shown in Fig. 49.1, and more sub-expression trees by reading
K-expression from the second head character beginning to the last are shown in
Fig. 49.3.

As shown in Figs. 49.1 and 49.3, the gene C decomposed into five sub-
expressions. The number of sub expressions is less than the head length of the
gene, because the MGEP algorithm doesn’t build an expression tree for a single
node. Sub-expressions in Fig. 49.3 are not obtained only by separating the
expression 49.1, it produced many novel expressions. The reason is that the
character of the depth and breadth in the new sub expression trees are different.
The tail length of the gene is larger than the required length, so the sub-expression
is valid.

444 W. Deng et al.

(@)) m © (c) ® (d) S
o e
ONO)
©

ONO

Fig. 49.3 A K-expression translates into five sub-expressions. a E; = [bx*sin(b+b)]/a.
b E; = axsin(b). ¢ E4 =sin(b). dEs =b+b

49.3.3 MGEP Fitness Assignment

The number of the sub-expressions of a gene is less than the head length of the
gene. The MGEP gene fitness is defined by the best sub-expression. This fitness
assignment idea is identical with the MEP algorithm. For instance, if we solve a
symbolic regression problem, the fitness of each sub-expression E; may be com-
puted using the formula:

f(E) = Z 10;; — wl (49.2)

where Oj; is the value of the sub-expression E; of the gene on the jth sample data
and W; is the corresponding target result. The fitness of the gene f(G) is equal to
the lowest fitness of the sub-expression in a single gene.

f(G) = minf(E;) (49.3)

49.3.4 MGEP Genetic Operators

The MGEP technique uses the same search operators as the GEP, such as cross-
over, mutation and transposition to obtain new individuals. In crossover, two
parent genes are randomly chosen and paired to exchange some material between
them. Mutation can occur anywhere in the gene, but the structural organization of
the gene should be preserved in this genetic operator. In MGEP, there are also
three kinds of recombination: one-point, two-point and gene recombination. The
genetic operation of MGEP is also operated on K-expression. So this novel
technology does not damage the structure of the classical GEP.

49 Multi-Expression Based Gene Expression Programming 445

49.3.5 MGEP Algorithm

In this section, we introduced the MGEP algorithm. The new algorithm only
improved GEP decoding way and fitness assignment of a gene. A K-expression is
decoded into several expression trees. So a gene of the MGEP contains multiple
solutions for a problem. Combined with MEP idea the best solution is chosen for the
MGEP gene. The MGEP algorithm is described in MATLAB language as follows:

function gene_fit = Fitness_Assignment(k_exp,T,h,t)
% Input arguments: a K-expression, terminal symbols, head length, tail length
% Output arguments: fitness value of the gene
% Create_ET is a another function which established an expression tree based on
% a sub-expression
% The Traverse function is to traverse an expression tree
% The Evaluate function is to assess a gene
fori=1:h
sub_k = []; sub_ET = []; sub_expression = []; %Initialize variables
if(~isempty(findstr(k_expression(i),T)) % Death gene is not taken into account
sub_k = k_expression(i:h+t); % Decomposition of a K-expression
sub_ET = Create_ET(sub_k); % Create an sub-expression tree
sub_expression = Traverse(sub_ET); % Traverse the sub expression tree
sub_fit(i) = Evaluate(sub_expression); % Evaluate the sub expression
end
end
gene_fit = min(sub_{fit);

49.4 Experiments and Analysis

We conducted two experiments, and compared the MGEP evolutionary perfor-
mance with the MEP and the GEP program. Three genetic algorithms were set
with the same evolution parameters. The length of a MEP chromosome was set to
be equal to the head length of a GEP gene. The number of MEP genes was more
than the MGEP’s. So we can compare their performance in the same environment.
The main parameters are given in Table 49.1.

Experiment: Two symbol regression problems, as the following formula:

y=x"+x +x (49.4)
=X +xy+y (49.5)

Based on the fourth problem, the terminal symbols would be set T = {x}, and
the other function is set to T = {x, y}. In this two problems, we choose h = 10.
For the sake of fairness, the length of a MEP chromosome takes the value 10. So

446 W. Deng et al.

Table 49.1 Two symbolic regression problems of experimental parameters

Function Number of Number of Maximum Crossover Mutation Accuracy
set chromosomes training data generation probability probability
{+.%} 50 15 500 0.9 0.5 0.000001

MGEP and MEP algorithm includes approximately the same number of genes.
Other parameters are given in Table 49.1. For two problems, each algorithm ran
50 times, and the comparison performance of three kinds of algorithm is shown in
Figs. 49.4 and 49.5 respectively, the specific result in the following Tables 49.2
and 49.3.

The comparison of evolutionary generations of GEP ,MEP and MGEP
Em T T T T T T T T T

500

400

300

200

evolutionary generation

100

0

the number of runs

| —&—— MGEP

—— GEP

MEP

Fig. 49.4

The evolutionary generation of the expression y = x* 4+ x> + x

The comparison of evolutionary generations of GEP MEP and MGEP
600 T r T T T T r T T

300 -,l[

evolutionary generation

500 «I ﬁ—*—hHi-*Hl Ao bbb
400 l

,\

the nurnber of runs

I|I

| —&— MGEP

—+— GEP

MEP |

Fig. 49.5 The evolutionary generation of the expression z = x> + x’y +y

-,,* At b L Hv.-

49 Multi-Expression Based Gene Expression Programming 447

Table 49.2 Comparison evolutionary results of the three kinds of algorithm for the problem
y=x'+x>+x

Algorithm Average The longest The shortest Probability of
generation generation generation success (%)
MGEP 4.68 28 1 100
Standard 426.46 497 1 20
GEP
Standard 25.64 110 1 100
MEP

Table 49.3 Comparison evolutionary results of the three kinds of algorithm for the problem
z=x"+ xzy +y

Algorithm Average The longest The shortest Probability of
generation generation generation success (%)
MGEP 25.46 117 1 100
Standard 467.06 455 1 10
GEP
Standard 343.12 466 31 58
MEP

The results of Experiment 1 showed that, in function mining with one variable,
MGEP algorithm was obviously better than the standard GEP and MEP algorithm.
The average number of generation to success of the MGEP is only 1.1 % of the
GEP and 18 % of the MEP, and the success probability of function mining was
significantly higher than the standard GEP and MEP algorithm.

In function mining with two arguments, the average number of generation to
success of MGEP was about only 5.3 % of the GEP and 7 % of the MEP. These
two experimental results showed the evolution efficiency of the MGEP algorithm
was much higher than the standard GEP and MEP algorithm. Because the novel
algorithm has the MEP unique feature which can store multiple solutions for a
problem in a single gene.

49.5 Conclusion

This paper proposed a new genetic algorithm MGEP. And we introduced the
fitness assignment and genetic operators for the MGEP. The algorithm integrates
GEP and MEP idea which contains several sub-expressions. Experiments showed
that when compared with the traditional GEP and the MEP, MGEP algorithm
significantly improved the evolutionary performance.

448 W. Deng et al.

Acknowledgments This work was supported by the National Natural Science Foundation of
China (Grant No. 61170199), Hunan Provincial Innovation Foundation for Postgraduate
(CX2012B367), Guangxi Key Laboratory of Trusted Software (Guilin University of Electronic
Technology), and the Scientific Research Fund of Education Department of Hunan Province,
China (Grant No. 11A004).

References

1. Oltean M, Grosan C (2004) Evolving digital circuits using multi- expression programming.
In: Proceedings of NASA/DoD conference on evolvable hardware. IEEE Press, pp 87-94

2. Oltean M, Grosan C, Diosan L, Mihaila C (2008) Genetic programming with linear
representation a survey, WSPC/INSTRUCTION FILE

3. O’Nell M, Vanneschi L, Gustafson S, Banzhaf W (2010) Open issues in genetic
programming. Genet Program Evolvable Mach 11:339-363

4. Oltean M, Grosan C (2003) A comparison of several linear genetic programming techniques.
Complex Syst 14:285-313

5. He P, Kang L, Johnson CG, Ying S (2011) Hoare logic-based genetic programming. Sci Ch
Inf Sci 54(3):623-637

6. Ferreira C (2002) Gene expression programming, 1st edn. Angra do Heroismo, Portugal

7. Ferreira C (2004) Gene expression programming and the evolution of computer programs. In:
de Castro LN, Von Zuben FJ (eds) Recent developments in biologically inspired computing,
vol 5. Idea Group Publishing, New York, pp 82-103

8. He P, Johnson CG, Wang HF (2011) Modeling grammatical evolution by automaton. Sci Ch
Inf Sci 54(12):2544-2553

9. Karakasis VK, Stafylopatis A (2006) Data mining based on gene expression programming
and clonal selection. IEEE congress on evolutionary computation, Vancouver, Canada,
pp 514-521

10. Tsakonas A (2006) A comparision of classification accuracy of four genetic programming-
evolved intelligent structures. Inf Sci 176:691-724

11. Cattani PT, Johnson CG (2010) ME-CGP: multi expression cartesian genetic programming.
IEEE Congr Evolut Comput 2010:1-6

12. Yanan W, Bo Y, Zhao X (2009) Countour registration based on multi-expression
programming and the improved ICP. IEEE, 2009

13. Chen Y, Jia G, Xiu L (2008) Design of flexible neural trees using multi expression
programming. In: Proceedings of Chinese control and decision conference, vol 1,
pp 1429-1434

	49 Multi-Expression Based Gene Expression Programming
	Abstract
	49.1…Introduction
	49.2…Background
	49.2.1 MEP and GEP
	49.2.2 MEP and GEP Related Literature
	49.2.3 MEP and GEP Weakness

	49.3…MGEP Model
	49.3.1 MGEP Initialization
	49.3.2 MGEP Representation
	49.3.3 MGEP Fitness Assignment
	49.3.4 MGEP Genetic Operators
	49.3.5 MGEP Algorithm

	49.4…Experiments and Analysis
	49.5…Conclusion
	Acknowledgments
	References

