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This study presents two branches of soft computing techniques, namely multi expression programming
(MEP) and multilayer perceptron (MLP) of artificial neural networks for the evaluation of rutting poten-
tial of dense asphalt-aggregate mixtures. Constitutive MEP and MLP-based relationships were obtained
correlating the flow number of Marshall specimens to the coarse and fine aggregate contents, percentage
of bitumen, percentage of voids in mineral aggregate, Marshall stability, and Marshall flow. Different cor-
relations were developed using different combinations of the influencing parameters. The comprehensive
experimental database used for the development of the correlations was established upon a series of uni-
axial dynamic creep tests conducted in this study. Relative importance values of various predictor vari-
ables of the models were calculated to determine the significance of each of the variables to the flow
number. A multiple least squares regression (MLSR) analysis was performed to benchmark the MEP
and MLP models. For more verification, a subsequent parametric study was also carried out and the
trends of the results were confirmed with the experimental study results and those of previous studies.
The observed agreement between the predicted and measured flow number values validates the effi-
ciency of the proposed correlations for the assessment of the rutting potential of asphalt mixtures. The
MEP-based straightforward formulas are much more practical for the engineering applications compared
with the complicated equations provided by MLP.

� 2010 Elsevier Ltd. All rights reserved.
1. Introduction

Permanent deformation is one of the considerable load-associ-
ated distress types affecting the performance of asphalt concrete
pavements. The repetitive action of traffic loads results in accumu-
lation of permanent deformations in asphalt pavements (Kaloush,
2001). One of the principal causes of pavement rutting is the per-
manent deformation. Rutting in asphalt pavement develops pro-
gressively with increasing numbers of load application. It usually
appears as longitudinal depression in the wheel paths accompa-
nied by small upheavals to the side (Pardhan, 1995). Rutting de-
creases the useful service life of the pavement and, by affecting
vehicle handling characteristics, creates serious hazards for high-
way users (Alavi, Ameri, Gandomi, & Mirzahosseini, 2010;
Gandomi, Alavi, Mirzahosseini, & Moqhadas Nejad, 2010; Sousa,
ll rights reserved.
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Craus, & Monismith, 1991). It can decrease drainage capacity of
pavements resulting in accumulation of water. Rutting also causes
a phenomenon called ‘‘Bleeding’’ where the asphalt binder rises to
the surface resulting in a very smooth pavement. Another effect of
rutting is the reduction in thickness of pavement which increases
the occurrence of the pavement failure through fatigue cracking
(Bahuguna, 2003). These depressions or ruts are of major concern
for at least two reasons: (1) if the surface is impervious, the ruts
trap water and hydroplaning is a definite threat particularly for
passenger cars, and (2) as the ruts develop in depth, steering
increasingly becomes difficult, leading to added safety concerns.
Previous studies show that rutting can have remarkable impacts
on trucks operational cost (Sousa et al., 1991). The above consider-
ations indicate that rutting is the most harmful distress mecha-
nism in asphalt pavements. According to a comprehensive
survey, rutting was considered to be the most serious distress
mechanisms in pavements, followed by fatigue cracking and then
thermal cracking (FHWA, 1998). As a result, it is important to fully
characterize the permanent deformation behavior of asphalt mixes
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under repeated loading and identify the problematic mixes before
they are placed in roadways (Alavi, Ameri, et al., 2010; Sousa et al.,
1991; Zhou, Scullion, & Sun, 2004).

Evaluation of the rutting potential of asphalt mix has been the
focus of much research in pavement engineering over the last dec-
ades. Majority of the available permanent deformation models are
empirical or semi-mechanistic with limited fundamental material
characterization. Unsatisfactory correlations with actual field per-
formance are the common result. Some of the empirical models
are derived from limited sets of materials and environmental con-
ditions. Thus, they lack robustness and are not transferable to other
conditions. The available rutting evaluation procedures are gener-
ally categorized into three main groups: (1) mechanistic-empirical
modeling approaches, (2) advanced constitutive modeling ap-
proaches, and (3) development of a simple performance test to
identify the rutting potential of mixtures during design based on
measured fundamental engineering properties and response
(Alavi, Ameri, et al., 2010; Kim, 2008, Chap. 11).

The mechanistic-empirical procedures for the rutting prediction
couple mechanistic computations of pavement stresses and strains
with empirical predictions of the consequent rutting. The earliest
mechanistic-empirical rutting models explicitly considered only
the strains in the subgrade (e.g., Shook, Finn, Witczak, &
Monismith, 1982). Chen, Zaman, and Laguros (1994) provided con-
cise summaries of the evolution of early models for predicting the
number of cycles to permanent deformation failure as a function of
the vertical compressive strain at the top of the subgrade. Timm
and Newcomb (2003) adapted a new model of the form of the ear-
liest models for predicting the asphalt rutting. Permanent strain
models are a division of the mechanistic-empirical models by
which the permanent vertical compressive strain at the mid-
thickness of an asphalt sublayer is related to the number of load
cycles, temperature, induced stress level, and other parameters.
One of the earliest permanent strain models was that implemented
in the VESYS program by different researchers (e.g., Kenis, 1977).
Permanent to resilient strain ratio models are another class of
the mechanistic-empirical models. The rationale for the permanent
to resilient strain ratio models is essentially to consolidate some of
the influences of temperature and stress level. Both of these
parameters influence the resilient elastic and permanent strains.
The permanent strains are normalized with the elastic strains to
capture most of the temperature and stress effects. The asphalt
rutting model implemented in the NCHRP Project 1–37A
mechanistic-empirical design methodology (NCHRP, 2004) is
based on this concept. The model has its origins in an extensive
laboratory study by Leahy (1989) of the repeated load permanent
deformation response of several asphalt concrete specimens.
Kaloush (2001) further improved the robustness of the rutting
model by combining Leahy’s original data with very large number
of repeated load permanent deformation test results. Among the
mechanistic-empirical procedures, regression models are similar
to the permanent strain and strain ratio models since they usually
have some mechanistic content such as a computed strain or
deflection level (Alavi, Ameri, et al., 2010; Kim, 2008). Many other
terms are also included to account for mixture characteristics,
environmental variables, and other factors. The most well known
of the regression approaches are the Highway Development and
Management Model-III (HDM-III) rutting performance models
(Kannemeyer & Visser, 1995).

The overall accuracy and robustness of the mechanistic-empir-
ical rutting models still rely heavily upon the quantity and quality
of the empirical data used for calibrating the empirical distress
model component. Fully mechanistic distress prediction over-
comes this limitation. This requires much more sophisticated con-
stitutive models for asphalt concrete behavior (Alavi, Ameri, et al.,
2010; Kim, 2008). Recently, significant efforts have been made on
material models that capture the viscoelastic, viscoplastic, and
damage response components needed to simulate the behavior of
asphalt concrete over its full range of temperatures, loading rates,
and stress conditions. These models are implemented into three-
dimensional nonlinear finite element codes and applied to realistic
test and field scenarios. Gibson, Schwartz, Schapery, and Witczak
(2003) and Gibson (2006) proposed one approach toward visco-
plastic modeling of asphalt concrete in compression in combina-
tion with a Schapery-type viscoelastic continuum damage model
(Schapery, 1999). Many researchers also applied the Schapery’s
model to various aspects of the asphalt concrete behavior (e.g.,
Chehab, Kim, & Witczak, 2004). The limitation of the finite ele-
ment-based models is that they are sensitive to the individual
cases. Also, a prior knowledge about the nature of the relationships
between the data is needed to develop these models.

Another important element in the design of the rut-resistant
pavements is screening of asphalt mixtures for the rut suscepti-
bility during mix design. The time to tertiary flow failure is
thought to be a good indicator of the rutting resistance of a gi-
ven mixture (Alavi, Ameri, et al., 2010; Kim, 2008). This can be
quantified via the flow number as measured in a repeated load
permanent deformation test. Dynamic creep test is found to be
one of the best methods for assessing the permanent deforma-
tion potential of asphalt mixtures (Kaloush & Witczak, 2002).
The curve of accumulated strain against number of load cycles
is the most important output of the dynamic creep test. Witczak,
Kaloush, Pellinen, El-Basyouny, and Von Quintus (2002) defined
the flow number as loading cycle number where tertiary defor-
mation starts. The flow number is more analogous to field con-
ditions since loading of pavement is not continuous. It can be
used to identify a mixture’s resistance to the permanent defor-
mation by measuring the shear deformation that occurs due to
haversine loading (Williams, Robinette, Bausano, & Breakah,
2007). The dynamic creep test is a sensitive and costly test.
Thus, it is not always possible to conduct the test. Therefore,
developing a relationship between the flow numbers obtained
from the dynamic creep test and parameters from the Marshall
mix design leads to considerable savings in construction cost
and time (Alavi, Ameri, et al., 2010; Gandomi et al., 2010).

Several alternative computer-aided data mining approaches
have recently been developed. An instance is pattern recognition
systems. These systems learn adaptively from experience and ex-
tract various discriminators. Artificial neural networks (ANNs)
(Haykins, 1999) are one of the most widely used pattern recogni-
tion methods. There have been some researches with the specific
objective of applying ANNs to the evaluation of the asphalt pave-
ments performance characteristics. Tarefder, White, and Zaman
(2005) constructed ANN-based models to determine a mapping
associating mix design and testing factors of asphalt concrete sam-
ples with their performance in conductance to flow or permeabil-
ity. Recently, Tapkin, Cevik, and Usar (2009) utilized ANN for the
prediction of the accumulated strain values obtained at the end
of repeated creep tests for polypropylene (PP) modified asphalt
mixtures. Xiao, Amirkhanian, and Hsein Juang (2009) used a mul-
tilayer feed-forward ANN to predict the fatigue life of rubberized
asphalt concrete mixtures containing reclaimed asphalt pavement.
Ceylan, Schwartz, Kim, and Gopalakrishnan (2009) successfully ap-
plied ANNs to the estimation of dynamic modulus of hot-mix as-
phalt. In spite of the successful performance of ANNs, they
usually do not give a deep insight into the process which they
use the available information to obtain a solution. In the present
study, the approximation ability of one of the most widely used
ANN architecture, namely multilayer perceptron (MLP) (Cybenko,
1989) is investigated. In order to provide a better form of relation-
ships between input and output data, the derived MLP models are
expressed in explicit forms.
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Genetic programming (GP) (Banzhaf, Nordin, Keller, & Francone,
1998; Koza, 1992) is another alternative approach for the analysis
of the rutting potential. GP may generally be defined as a super-
vised machine learning technique that searches a program space
instead of a data space. Many researchers have employed GP and
its variants to find out any complex relationships between the
experimental data (e.g., Cevik & Cabalar, 2009; Cevik, 2007;
Gandomi, Alavi, Kazemi, & Alinia, 2009; Johari, Habibagahi, &
Ghahramani, 2006). Recently, Gandomi et al. (2010) developed
new models to predict the flow number of asphalt mixtures utiliz-
ing gene expression programming. Also, Alavi, Ameri, et al. (2010);
combined the GP and simulated annealing algorithms to obtain
new prediction equations for the flow number of Marshall speci-
mens. Multi expression programming (MEP) (Oltean & Dumitrescu,
2002) is a recent variant of GP using a linear representation of
chromosomes. MEP has a special ability to encode multiple com-
puter programs of a problem in a single chromosome. Applications
of MEP to civil engineering tasks are quite new and restricted to a
few areas (e.g., Alavi & Gandomi, in press; Alavi, Gandomi, Sahab, &
Gandomi, 2010; Baykasoglu, Gullub, Canakci, & Ozbakir, 2008).

In this study, the MEP and MLP techniques are utilized to eval-
uate the rutting potential of dense asphalt mixtures in the form of
the flow number. Generalized relationships were obtained to cor-
relate the flow number to the particle size distribution of natural
soil, bitumen, voids in mineral aggregate, Marshall stability, and
Marshall flow. The proposed correlations were developed based
on several uniaxial dynamic creep tests on standard Marshall spec-
imens conducted at Iran University of Science and Technology civil
engineering laboratories. The experimental database covers a wide
range of aggregate gradation. A linear regression analysis was per-
formed to benchmark the MEP and MLP-based correlations.
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Fig. 1. Plot of accumulated strain versus number of loading cycles, obtained from
dynamic creep test (Witczak et al., 2002).
2. Rutting mechanisms characterization

Rutting can take place in different times of pavement service life.
Basically, there are two mechanisms for rutting. The first mechanism
that happens in the first years of pavement life is ‘‘initial rutting’’.
This mechanism is caused by the densification of asphalt mixture
especially for loosely compacted pavements. The initial rutting is fol-
lowed by the second mechanism called ‘‘shear deformation’’. This
mechanism, also named ‘‘secondary rutting’’, is the primary mecha-
nism of rutting in well compacted pavements. In the shear deforma-
tion stage, the material moves from under the wheel path and causes
upheaval on the side. Previous studies indicated that the shear defor-
mation was the primary rutting mechanism rather than the densifi-
cation mechanism (Hofstra & Klomp, 1972; Sousa et al., 1991).

One of the tests that can characterize the mentioned mecha-
nisms of rutting is the dynamic creep repeated load test. This test
has widely been used to determine permanent deformation char-
acteristics of paving material since it was employed by Monismith,
Ogawa, and Freeme (1975) in the mid-1970s. The use of this test is
a result of its simplicity and because of its logical connection with
the permanent deformation in asphalt mixes. As with all other lab-
oratory tests, one major problem with the laboratory creep tests
are the difficulty in relating laboratory results with actual field per-
formance (Tam, Solaimanian, & Kennedy, 2000). It is not feasible to
directly predict the rut depth by use of the creep repeated load test.
The most important output of the dynamic creep test is the curve
of accumulated strain against number of load cycles which de-
pends on the rutting resistance of mixture (Zhou et al., 2004)
(see Fig. 1). The relationship between the accumulated strain and
loading cycles can be explained by the densification and shear flow
mechanisms (Alavi, Ameri, et al., 2010).

As shown in Fig. 1, the curve includes three distinct zones: (1)
primary zone, (2) secondary zone, and (3) tertiary zone. During
the primary zone, the mixture volume decreases (densification)
and accumulated strain increases dramatically. The secondary
zone can be identified as a transition zone between the primary
and the tertiary zones. The tertiary zone can be named as appear-
ance of the second mechanism of rutting in which the shear defor-
mation starts and rutting increases again. The three-stage
permanent deformation behavior is a basic property of asphalt
mixes (Zhou et al., 2004). According to Witczak’s theory (Witczak
et al., 2002), the loading cycle number where tertiary deformation
starts is called the flow number. Reasonable correspondence of the
permanent strain and flow number with the rut depth is shown by
previous researchers. Besides the emphasis on the permanent
strain, the experts generally agree on the flow number as the best
indicator of the rutting potential of asphalt mixes (Alavi, Ameri,
et al., 2010; Witczak et al., 2002; Zhou et al., 2004). The flow num-
ber is recorded where the minimum slope occurs in Fig. 1.
3. Experimental study

A comprehensive research study was conducted by NCHRP to
develop a simple mechanical test to supplement the Superpave
volumetric method of mixtures design. Among the five laboratory
tests investigated, the dynamic creep test had very good correla-
tion with measured rut depth and a high capability to estimate
the rutting potential of asphalt layers (Kaloush & Witczak, 2002).
On the basis of the results of the previous research (Alavi, Ameri,
et al., 2010; Kaloush & Witczak, 2002), the dynamic creep test
was chosen as an appropriate laboratory method to investigate
the rutting potential of dense bituminous mixtures. Results of this
experimental study were used in the development of the MEP and
MLP-based models.
3.1. Testing apparatus

The uniaxial dynamic creep test has been used to determine the
rutting potential of asphalt mixtures for many years. One of the de-
vices developed on the basis of the dynamic creep test is universal
testing machine (UTM). UTM-5 can be considered as the first gen-
eration of UTM. This device is capable of determining the impor-
tant mechanical parameters of asphalt mixtures under similar
field conditions (i.e. similar loading and temperature). The UTM-
5 apparatus at Iran University of Science and Technology Asphalt
Mixtures and Bitumen Research Center utilized for the aim of this
study is shown in Fig. 2. This device is equipped with compressed
air loading system and can impose any type of load such as
rectangular and sinusoidal. The related software to the test has



Fig. 2. UTM-5 apparatus at Iran University of Science and Technology.
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been developed in accordance with Australian Standard (AS
2891.12.1) and is in agreement with European, British and US Stan-
dards (King, 2003). A typical curve of accumulated strain versus
loading cycles is as shown in Fig. 1.
3.2. Selected materials

The aggregates employed in the construction of asphalt samples
were crushed aggregates and prepared from the gravel and sand
mines of Rigzar Asphalt Factory located in the Shahryar road, Karaj,
Iran. The used fillers were river materials and obtained from
Makadam-e Shargh Asphalt Factory, Semnan, Iran. Also, bitumen
with the penetration of 60/70 was supplied by Tehran Refinery
and Pasarghad Oil Company, Tehran, Iran.
3.3. Grading of aggregate

Grading of aggregates can be characterized as one of the most
effective factors on the resistance of asphalt mixtures against rut-
ting. Poorly graded mixtures with too many fine or coarse aggre-
gate would fail to provide the appropriate resistance to rutting.
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Fig. 3. Graph of 3 limits of grading No. 3.
In general, higher amount of fine aggregate as well as a perfect bal-
ance between the distribution of coarse aggregate, fine aggregate
and filler may lead to increase in the resistance of asphalt sample
(Alavi, Ameri, et al., 2010; Gandomi et al., 2010). In this research,
9 grading systems were considered for constructing the samples.
Among different grading systems presented by Code 234 of Iran
Management and Planning Organization (IAHC) (IAHC, 2000),
upper, middle and lower limits of grading No. 3, 4 and 5 were se-
lected. Figs. 3–5 show the grading diagram.
3.4. Aggregate tests

In order to control the quality of the aggregates, a number of
tests such as Los Angeles abrasion and crushed percentage were
conducted. The obtained results are presented in Tables 1 and 2.
3.5. Bitumen tests

The bitumen characteristics should be in accordance with the
requirements specified in the standards. Thus, some tests such as
penetration test, ductility test, and determination of softening
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Fig. 4. Graph of 3 limits of grading No. 4.
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Table 2
The specific gravity test results for coarse aggregate, fine aggregate and filler.

Aggregate range Standard
number

Specific
gravity

Coarse aggregate (remained on sieve No. 8)
(gr/cm3)

ASTM C
127

2.49

Fine aggregate (passed from sieve No. 8 and
remained on sieve No. 200) (gr/cm3)

ASTM C
128

2.49

Fine aggregate (passed from sieve No. 200) (gr/cm3) ASTM C
188 � 95

2.60

Table 3
Results of tests on bitumen 60/70.

Tests Standard number Results

Penetration grade at 25 �C (1/10 mm) ASTM D5 62
Ductility (cm) ASTM D113 102
Softening point (�C) ASTM D36 49
Unit weight at 25 �C (gr/cm3) ASTM D70 1.01
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point and unit weight of the bitumen were performed. The physical
properties of the bitumen samples are given in Table 3.

3.6. Samples preparation

The asphalt mixture samples were fabricated and tested under
the similar environmental conditions of filed. The construction of
the samples included three phases of separate heating of the aggre-
gate and bitumen, mixing and compacting of the obtained mixture.
The samples were constructed according to the Marshall method
(ASTM D1559, 1993). The percentage of the used bitumen was se-
lected in a way that the optimal amount of bitumen to be in the
mean range of percentage. On the basis of the literature review
and evaluation of executive documents (Alavi, Ameri, et al.,
2010; Gandomi et al., 2010), the following bitumen percentages
were adopted for the construction of the samples:

1. Grading No. 3: 4%, 4.5%, 5%, 5.5%, and 6%.
2. Grading No. 4: 4.5%, 5%, 5.5%, 6%, and 6.5%.
3. Grading No. 5: 5%, 5.5%, 6%, 6.5%, and 7%.

Finally, the compaction process was conducted using 75 blow of
a 4.5 kg hammer to each side of the samples falling 45 cm (ASTM
D1559, 1993). A total of 270 samples were constructed and tested
in this research.

3.7. Tests on asphalt samples

After conducting the Marshall stability test on half of the sam-
ples, Rice test was performed to determine the percentage of the
air void of the samples. VMA was determined using Eq. (1) and fi-
nal VMA was obtained by taking the average of three samples (Tom
& Krishna Rao, 2007, Chap. 26):

VMA ¼ Va þ Vb; ð1Þ

where Va is the air void of asphalt mixture; Vb is the volume per-
centage of the bitumen and can be determined using the following
equation:
Table 1
Results of mineral aggregate tests.

Crushing percentage (1 side – 2 sides) Los Angles abrasion test

ASTM D 5821 AASHTO T 96
92–100% 25%
Vb ¼
Wb
Gb

W1þW2þW3þWb
Gm

; ð2Þ

where W1, W2, W3 are the weight of the coarse aggregate, fine
aggregate and filler, respectively. Wb is the bitumen weight and
Gb is the bitumen unit weight. Gm is the specific weight of the sam-
ple computed using:

Gm ¼
Wm

Wm �Ww
; ð3Þ

where Wm and Ww are respectively the weight of the asphalt
sample in air and water. After conducting the dynamic creep tests
on the samples, the flow numbers were determined. The final
flow numbers were obtained by taking the average of three
samples.

3.8. Repeated creep test results

The repeated creep test results have already been presented
by the authors (Alavi, Ameri, et al., 2010; Gandomi et al.,
2010). However, for more clarification, the outcomes of the
experimental study are also presented herein in Figs. 6–8. The
variations of the flow number (Fn) with bitumen percent (BP)
for No. 3, 4 and 5 grading samples are shown in Fig. 6. It can
be seen that, in most cases, Fn initially increases when BP in-
creases to a certain point (optimum binder content) and then
it starts decreasing. Besides, Fig. 6 indicates that the upper limits
of grading No. 3, 4 and 5 have higher resistance to rutting com-
pared to middle and lower limits. This is largely due to its high-
er amount of fine aggregate and better balance between
distributions of materials. At each of the grading limits consid-
ered in this study, the percentage of VMA initially decreased.
By plotting the curve of variations of VMA with Fn for each grad-
ing considered in this study (Fig. 7), it can be concluded that
contrary to the growing-declining trend of VMA, Fn has a declin-
ing trend. This can be attributed to the increase of bitumen per-
cent in the sample. In general, increase in the bitumen percent
corresponds to increase in the rutting potential and softening
of the sample. As shown in Fig. 7(a)–(c), among different limits
of grading, the upper limits had the highest resistance to rutting.
Fig. 8 illustrates the variations of Fn with Marshall stability to
flow ratio (M/F) for different grading samples. It can be observed
from this figure that Fn continuously increases with increasing
M/F. The exception occurs at middle limit of grading No. 4. In
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Fig. 6. The flow number variations versus bitumen percentage for grading No. 3, 4 and 5.
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Fig. 7. The flow number variations versus VMA percentage for grading No. 3, 4 and 5.
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this case, the Fn increases with increasing M/F up to about 3 and
then starts decreasing (Alavi, Ameri, et al., 2010; Gandomi et al.,
2010).
4. Soft computing techniques

Soft computing includes evolutionary algorithms and all of
their different branches combined with ANNs and fuzzy logic.
Soft computing techniques have wide-ranging applications as
important tools for approximating the nonlinear relationship be-
tween the model inputs and corresponding outputs. Develop-
ments in the computer hardware during the last two decades
have made it much easier for these techniques to grow into
more efficient frameworks. In addition, it has been proven that
several soft computing techniques may be used as tools in prob-
lems where conventional approaches fail or perform poorly. A
survey of the existing literature reveals the growing interest of
the research community on the relatively new field of soft com-
puting. In this paper, two of the soft computing techniques,
namely MEP and MLP are applied to the prediction of rutting
resistance of asphalt mixtures.

4.1. Genetic programming

GP is a symbolic optimization technique that creates computer
programs to solve a problem using the principle of Darwinian nat-
ural selection. GP was introduced by Koza (1992) as an extension
of genetic algorithms (GAs). In GP, a random population of com-
puter programs (trees) is created to achieve high diversity. A pop-
ulation member in GP is a hierarchically structured tree
comprising functions and terminals. The functions and terminals
are selected from a set of functions and a set of terminals. For
example, the function set F can contain the basic arithmetic oper-
ations (+,�,�, /, etc.), Boolean logic functions (AND, OR, NOT, etc.),
or any other mathematical functions. The terminal set T contains
the arguments for the functions and can consist of numerical con-
stants, logical constants, variables, etc. The functions and terminals
are chosen at random and constructed together to form a computer
model in a tree-like structure with a root point with branches



  Terminal Nodes

   Functional Node

Link

+

SQ 

X1

- 

X2

2 

Root Node

Fig. 9. The tree representation of a GP model (2 + (X1 � X2)2.
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extending from each function and ending in a terminal. An exam-
ple of a simple tree representation of a GP model is illustrated in
Fig. 9 (Alavi, Ameri, et al., 2010).

Creation of the initial population is a blind random search for
solutions in the large space of possible solutions. Once a population
of models has been created at random, the GP algorithm evaluates
the individuals, selects individuals for reproduction, and generates
new individuals by mutation, crossover, and direct reproduction
(Koza, 1992). During the crossover procedure, a point on a branch
of each solution (program) is selected at random and the set of ter-
minals and/or functions from each program are then swapped to
create two new programs as can be seen in Fig. 10. The evolution-
ary process continues by evaluating the fitness of the new popula-
tion and starting a new round of reproduction and crossover (Alavi,
Ameri, et al., 2010). During this process, the GP algorithm occasion-
ally selects a function or terminal from a model at random and mu-
tates it (see Fig. 11). MEP is a linear variant of GP. The linear
variants of GP make a clear distinction between the genotype
and the phenotype of an individual. Thus, the individuals are rep-
resented as linear strings that are decoded and expressed like non-
linear entities (trees) (Gandomi, Alavi, & Sadat Hosseini, 2008;
Oltean & Gross�an, 2003a).
4.1.1. Multi expression programming
MEP is a subarea of GP that was developed by Oltean and

Dumitrescu (2002). MEP uses linear chromosomes for solution
encoding and has a special ability to encode multiple solutions
(computer programs) in a single chromosome. Based on the fitness
values of the individuals, the best encoded solution is chosen to
represent the chromosome (Alavi, Gandomi, Sahab, et al., 2010).
- 

/

X2X2

X1

SQ 

SQ 

X1

X2

Log 

-

Parent I Parent II 

Cross
SQ 

+

Fig. 10. Typical crossover operat
Comparing to the other GP variants that store a single solution in
a chromosome, MEP does not usually increase the complexity of
the decoding process (Oltean & Gross�an, 2003a). The evolutionary
steady-state MEP algorithm starts by the creation of a random pop-
ulation of individuals. In order to evolve the best expression along
a specified number of generations, two parents are selected using a
binary tournament procedure and are recombined with a fixed
crossover probability. Thereafter, two offspring are obtained by
the recombination of two parents. The offspring are mutated and
the worst individual in the current population is replaced with
the best of them. This process is repeated until a termination con-
dition is reached (Oltean & Gross�an, 2003a).

MEP is represented similar to the way in which C and Pascal
compilers translate mathematical expressions into machine code.
The number of MEP genes per chromosome is constant and speci-
fies the length of the chromosome. A terminal (an element in the
terminal set T) or a function symbol (an element in the function
set F) is encoded by each gene. A gene that encodes a function in-
cludes pointers towards the function arguments (Alavi, Gandomi,
Sahab, et al., 2010). Function parameters always have indices of
lower values than the position of that function itself in the chromo-
some. The first symbol in a chromosome must be a terminal sym-
bol as stated by the proposed representation scheme. An example
of an MEP chromosome can be seen below. It should be noted that
numbers to the left stand for gene labels that do not belong to the
chromosome. Using the set of arithmetic operators as F = {+,�, /}
and the set of terminals as T = {x1,x2,x3,x4}, the example is given
as follows:

0: x1

1: x2

2: �0, 1
3: x3

4: +2, 3
5: x4

6: /4, 5

The translation of MEP individuals into computer programs can
be obtained by reading the chromosome top-down starting with
the first position (Alavi, Gandomi, Sahab, et al., 2010). A terminal
symbol defines a simple expression and each of function symbols
specifies a complex expression obtained by connecting the oper-
ands specified by the argument positions with the current function
symbol (Oltean & Gross�an, 2003b). In the present example, genes 0,
1, 3 and 5 encode simple expressions formed by a single terminal
symbol. These expressions are: E0 = x1; E1 = x2; E3 = x3; E5 = x4. Gene
2 indicates the operation ‘‘�’’ on the operands located at positions
-
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/

SQ X2
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X2SQ 
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+

ion in genetic programming.



Log

/

X1

X2

X1

X2/

Log  

Mutation

+

Fig. 11. Typical mutation operation in genetic programming.
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0 and 1 of the chromosome. Therefore gene 2 encodes the expres-
sion: E2 = x1 � x2. Gene 4 indicates the operation ‘‘+’’ on the oper-
ands located at positions 2 and 3. Therefore gene 4 encodes the
expression: E4 = (x1 � x2) + x3. Gene 6 indicates the operation ‘‘/’’
on the operands located at positions 4 and 5. Therefore gene 6 en-
codes the expression: E6 = ((x1 � x2) + x3)/x4. In order to choose one
of these expressions (E1–E6) as the chromosome representer, mul-
tiple solutions in a single chromosome are encoded. Each of these
expressions can be considered as a possible solution of a problem.
The fitness of each expression encoded in an MEP chromosome is
defined as the fitness of the best expression encoded by that chro-
mosome. The fitness of an MEP chromosome may be computed by
the following formula (Oltean & Gross�an, 2003b):

f ¼min
i¼1;m

Xn

j¼1

Ej � Oi
j

��� ���
( )

; ð4Þ

where n is the number of fitness cases, Ej is the expected value for
the fitness case j;Oi

j is the value returned for the jth fitness case by
the ith expression encoded in the current chromosome, and m is the
number of chromosome genes.

4.2. Artificial neural network

ANNs are powerful tools for the prediction of nonlinearities
using modeling philosophy similar to that used in the development
of most of conventional statistical models. The conventional statis-
Fig. 12. A schematic diagram of a neu
tical models use predefined mathematical equations to extract the
relationships between the model inputs and corresponding out-
puts. Unlike most of the available statistical methods, ANNs use
the data alone to determine the structure of the model and the un-
known model parameters.

4.2.1. Multilayer perceptron network
MLPs are a class of ANN structures using feedforward architec-

ture. MLPs are universal approximators, that is, they are capable of
approximating essentially any continuous function to an arbitrary
degree of accuracy (Cybenko, 1989). MLPs are usually applied to
perform supervised learning tasks, which involve iterative training
methods to adjust the connection weights within the network.
They are usually trained with back propagation (BP) (Rumelhart,
Hinton, & Williams, 1986) algorithm. Fig. 12 shows a schematic
diagram of a BP neural network. An MLP network consists of an in-
put layer, at least one hidden layer of neurons and an output layer.
Each of these layers has several processing units and each unit is
fully interconnected with weighted connections to units in the
subsequent layer. Each layer contains a number of nodes. Every in-
put is multiplied by the interconnection weights of the nodes
(Alavi, Gandomi, Mollahasani, Heshmati, & Rashed, 2010). Finally,
the output (hj) is obtained by passing the sum of the product
through an activation function as follows:

hj ¼ f
X

i

xiwij þ b

 !
; ð5Þ

where f () is activation function, xi is the activation of ith hidden
layer node and wij is the weight of the connection joining the jth
neuron in a layer with the ith neuron in the previous layer, and b
is the bias for the neuron. For nonlinear problems, the sigmoid func-
tions (Hyperbolic tangent sigmoid or log-sigmoid) are usually
adopted as the activation function. Adjusting the interconnections
between layers will reduce the following error function:

E ¼ 1
2

X
n

X
k

tn
k � hn

k

� �2
; ð6Þ

where tn
k and hn

k are respectively the calculated output and the ac-
tual output value, n is the number of sample and k is the number
ral network using BP algorithm.
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of output nodes. Further details of MLPs are provided by Cybenko
(1989) and Alavi, Gandomi, Mollahasani, et al. (2010).
5. Development of models for rutting potential evaluation and
analysis

Evaluation of the field rutting potential of asphalt mix has tra-
ditionally been a complicated task. Rutting is mainly influenced
by several factors. An element of asphalt layer subjected to traffic
loading transfers the load from the surface to underlying layers
through intergranular contact and resistance to flow of the binder
matrix. The stress pattern induced in a three-dimensional pave-
ment structure due to traffic loading is complex. The stresses are
transient and change with time as the wheel passes. When the re-
sponse also depends on the time or on the rate of loading and tem-
perature, material characterization becomes even more difficult.
The properties of the individual components of asphalt and how
they react with each other affect its behavior. There are occasions
when the bituminous binder and aggregate are adequate but the
mix fails to exhibit desired performance. The possible reasons are
poor compaction, use of incorrect bituminous binder, poor adhe-
sion, or some other problems associated with the mixture. In order
to provide accurate assessment of the rutting potential of asphalt
mix, the effects of several influencing factors should be incorpo-
rated into the model development. In the following subsections,
first, the factors governing rutting potential are analyzed. Next,
the details of developing the models are presented.

5.1. Analysis of internal factors affecting rutting

The internal factors affecting rutting can be divided into three
basic categories of aggregate, bitumen and asphalt mixture charac-
teristics (Alavi, Ameri, et al., 2010; Gandomi et al., 2010; Sousa
et al., 1991).

5.1.1. Mineral aggregate
The mineral aggregates constitute the rate of 90–95% of mixture

weight and 75–85% of mixture volume of asphalt mixtures and
perform as skeleton and bearing member (Topal & Sengoz, 2005).
Therefore, the physical and mineralogical properties of the mineral
aggregate have noticeable effects on the quality and characteristics
of asphalt mixtures. One of the most important parameters in
aggregates is grading. Amount of the coarse aggregate, fine aggre-
gate and nominal maximum aggregate size (NMAS) have remark-
able influences on pavement rutting. From open grading to
continuous grading, the rutting resistance increases which might
be due to air void decline and more contact point at a certain com-
paction percentage (Sousa et al., 1991). Besides, the particle shape,
being angular or rounded, and surface texture of aggregate, being
rough or smooth, play an important role in the rutting resistance
(Alavi, Ameri, et al., 2010).

5.1.2. Binder
The binder amount is one of the fundamental components of as-

phalt mixtures. It is used as a cohesive material to bond the aggre-
gates. The rutting propensity of asphalt mixture is significantly
affected by the stiffness of the binder. Many researchers have rec-
ognized the importance of the binder in contribution to the perma-
nent deformation behavior of an asphalt aggregate mixture
(Pardhan, 1995). With increase in the binder stiffness, mixture
stiffens, and therefore, resistance to rutting increases (Sousa
et al., 1991). The mixture with more amount of binder has more
workability. Plasticity of such mixture increases at higher temper-
ature and the mixture is more prone to rutting (Mahboub & Little,
1988). Based on the finite element simulation of asphalt samples,
an increase occurs in the rut depth by increasing the bitumen con-
tent (Pirabarooban, Zaman, & Tarefder, 2003).

5.1.3. Properties of asphalt mixture
Optimum amount of bitumen may have an appreciable influ-

ence on the capability of asphalt mixture to resist the permanent
deformation (Sousa et al., 1991). The air voids of the mixture are
negatively correlated with the asphalt binder content (Lavin,
2003). To prevent some difficulties such as lack of the stability
and permanent deformation, the air void is recommended to be
at least 3 percent (Monismith, Epps, & Finn, 1985). VMA is the total
volume of voids within the mass the compacted aggregate. It is the
volume of the air voids of the mixture plus the volume of the effec-
tive asphalt binder in the mixture. VMA allows room for enough
asphalt binder to make a durable mixture plus enough room for
the air voids to ensure a stable mixture [38]. In order to resist
the permanent deformation, asphalt mixtures should have low
percentage of VMA. Such grading can be determined using dry
aggregate tests. It is widely known that the rutting resistance of
the mixtures increases as the air void and VMA decrease (Pardhan,
1995; Sousa et al., 1991).

Stability is the most important property of asphalt mixtures in
the wearing course design. It is the ability of the pavement to resist
shoving and rutting under traffic. Thus, the stability should be high
enough to handle traffic adequately, but not higher than the traffic
conditions required. The lack of the stability in an asphalt mix
causes unraveling and flow of the road surface. Flow is the ability
of asphalt pavement to adjust to gradual settlements and move-
ments in the subgrade without cracking. The flow is regarded as
an opposite property to the stability. It determines the reversible
behavior of the wearing course under traffic loads and affecting
plastic and elastic properties of asphalt concrete (Hinislıoglu &
Agar, 2004; Kuloglu, 1999). The Marshall quotient is calculated
as the ratio of the stability to the flow. This ratio is an indicator
of the mix stiffness, resistance to the shear stress, permanent
deformation, and rutting of the bitumen concrete (Haddadi,
Ghorbel, & Laradi, 2008; Hinislıoglu & Agar, 2004; Hitch & Russell,
1977; Nijboer, 1957). High Marshall quotient values imply high
stiffness mix and therefore indicate a great ability of the mix to fail
by cracking (Alavi, Ameri, et al., 2010).

5.2. Experimental database and data preprocessing

As mentioned previously, several uniaxial dynamic creep tests
carried out in the laboratory environment utilizing UTM-5 to de-
velop the database. This database has already been used by the
authors (Alavi, Ameri, et al., 2010; Gandomi et al., 2010) to analyze
the permanent deformation of asphalt mixtures. The database in-
cludes the measurements of coarse aggregate (C), fine aggregate
(S), filler (FP), air voids (Va), voids in mineral aggregate (VMA), bitu-
men (BP), Marshall stability (M), Marshall flow (F) and Fn. C/S,
FP(%), BP(%), VMA(%) and M/F were considered as the input vari-
ables for the proposed models based on the analysis of the factors
affecting rutting and after an extensive literature review. C/S and
FP represent the grain size distribution, BP is a representative of
the binder content, and VMA and M/F are the asphalt mixture char-
acteristics. VMA is actually a property of aggregates in the mixture.
Changes in the aggregates gradation or shape provide significant
changes in VMA (Lavin, 2003). The descriptive statistics of the data
used in this study are given in Table 4. The results of the repeated
creep tests are given in Appendix A. To visualize the distribution of
the samples, the data are presented by histogram plots (Fig. 13).

It is noteworthy that some of the above variables are fundamen-
tally interdependent. This interdependency can cause problems in
analysis as it will tend to exaggerate the strength of relationships
between the variables. Filler is calculated by subtracting the sum



6090 M.R. Mirzahosseini et al. / Expert Systems with Applications 38 (2011) 6081–6100
of coarse and fine aggregate from 100. Hence, filler and coarse
aggregate to fine aggregate ratio were not used together in the pro-
posed models. Out of the 270 samples constructed and tested here-
in, the final 118 flow number values were extracted by taking the
average of three samples. For the MEP and MLP analyses, the devel-
oped database was randomly divided into learning, validation and
testing subsets. The learning data were used for the training of the
algorithm. The validation data were used to specify the generaliza-
tion capability of the obtained models on the data that was not
used for learning (model selection). The learning and validation
data sets were used to select the best models and were included
in the training process. Thus, they were categorized into one group
referred to as ‘‘training data’’ (Alavi, Ameri, et al., 2010). In order to
obtain a consistent data division, several combinations of the train-
ing and testing sets were considered. Out of the 118 data, 89 data
were used as the training data (80 sets for the learning process and
9 sets as the validation data). The remaining 29 data sets were ta-
ken for the testing of the generalization capability of the MEP and
MLP-based correlations on the data that played no role in building
the models.

5.3. Performance measures

The following objective function (OBJ) was constructed as a
measure of how well the model predicted output agrees with the
experimentally measured output. The selections of the best MEP
and MLP models were deduced by the minimization of the follow-
ing function:

OBJ ¼ No:Learning � No:Validation

No:Training

� �
MAELearning

R2
Learning

þ 2No:Validation

No:Training

� MAEValidation

R2
Validation

; ð7Þ

where No.Learning, No.Validation and No.Training are respectively the
number of learning, validation and training data; R and MAE are
respectively correlation coefficient and mean absolute error given
in the form of formulas as follows:

R ¼
Pn

i¼1 hi � hi

� �
ti � ti
� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1 hi � hi

� �2Pn
i¼1 ti � ti
� �2

r ; ð8Þ

MAE ¼
Pn

i¼1 hi � tij j
n

; ð9Þ

in which hi and ti are respectively actual and calculated outputs for
the ith output, is the average of the actual outputs, and n is the
number of sample. It is well known that only R is not a good indi-
cator of prediction accuracy of a model. This is because that by
shifting the output values of a model equally, the R value will not
Table 4
Descriptive statistics of variables used in the model development.

Parameter Input

C(%) S(%) FP(%) B

Mean 57.31 37.15 5.54 5
Standard error 1.32 1.04 0.29 0
Median 57.00 37.00 6 5
Standard deviation 14.33 11.31 3.17 0
Sample variance 205.33 128.01 10.06 0
Kurtosis �0.97 �0.83 �1.32 �
Skewness �0.22 0.25 0.13 0
Range 48 39 9 3
Minimum 33 18 1 4
Maximum 81 57 10 7
change. The constructed objective function takes into account the
changes of R and MAE together. Higher R values and lower MAE val-
ues result in lowering OBJ and, consequently, indicate a more pre-
cise model. In addition, the above function considers the effects of
different data divisions for the learning and validation data.
5.4. Model construction using MEP

In some problems such as the rutting potential of asphalt mix-
tures, it is not simple to identify a relationship between the param-
eters, or the problem could be too complex to be described in a
mathematical function. In this study, the MEP technique was em-
ployed to obtain meaningful relationships between the flow num-
ber of asphalt mixes and the factors affecting the mixture
resistance to permanent deformation. The most important factors
representing the rutting behavior were selected based on an exten-
sive trial study and literature review. Consequently, the flow num-
ber (Fn) formulation was considered to be as follows:
LogðFnÞ ¼ f
C
S
ðFPÞ;BP;VMA;

M
F

� �
ð10Þ
where,

C/S: Coarse aggregate to fine aggregate ratio
FP(%): Percentage of filler
BP(%): Percentage of bitumen
VMA(%): Percentage of voids in mineral aggregate
M/F: Marshall stability to flow ratio (Marshall quotient)

After developing and controlling several models with different
combinations of the input parameters, two MEP-based models
were selected and presented as the optimal models. The first com-
bination includes C/S, BP, VMA and M/F, and the other comprises
FP, BP, VMA and M/F. Various parameters involved in the MEP pre-
dictive algorithm are shown in Table 5. The parameter selection
will affect the model generalization capability of MEP. They were
selected based on some previously suggested values (Alavi &
Gandomi, in press; Alavi, Gandomi, Sahab, et al., 2010; Baykasoglu
et al., 2008) and also after a trial and error approach. For develop-
ing the MEP-based empirical models, source code of MEP (Oltean,
2004) in C++ was modified by the authors to be utilizable for the
available problem. In order to evaluate the contribution of each
predictor variable to the prediction of the flow number, frequency
values of the input parameters were obtained. A frequency value
equal to 1.00 for an input indicates that this input variable has
been appeared in 100% of the best thirty programs evolved by MEP.
Output

P(%) VMA(%) M(KN) F(mm) Fn

.51 16.55 10.16 3.50 227

.07 0.13 0.19 0.06 13.25

.5 16.59 10.24 3.44 240

.81 1.41 2.04 0.62 143.97

.66 2.00 4.15 0.38 20728.55
0.81 �0.75 1.68 �0.73 �1.24
.02 �0.24 �0.85 0.17 0.07

5.84 12.57 2.65 488
13.20 2.73 2.10 22
19.04 15.30 4.75 510



Table 5
Parameter settings for the MEP algorithm.

Parameter Settings

Function set +, �, �, /, exp, sin, cos
Number of generations 100
Population size 500 � 2000
Chromosome length 50 Genes
Number of generations 250
Crossover probability 0.5, 0.9
Crossover type Uniform
Mutation probability 0.01
Terminal set Problem inputs
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Fig. 13. The histograms of input and output variables.
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5.4.1. The MEP-based formulation for the flow number of asphalt mix
The MEP-based formulations of the flow number, Fn, are as gi-

ven below:

LogðFnÞ ¼
C=S

ð2C=S� 5Þð�2VMA� 5Þ þ
M=F

ð2C=S� 4ÞðBP� VMAÞ

þ Exp
C=S� VMAþ 1
M=F � VMA� 4

� �
ð11Þ

LogðFnÞ ¼
�4FP� BP2

VMA� ExpðFPÞ þ
FPþ 2VMAþ 1=M=F

VMA
ð12Þ

A comparison the experimental and predicted flow number values
for the training and testing data is shown in Fig. 14. The frequency
values of input parameters are presented in Fig. 15. According to
these figures, the flow number is more sensitive to VMA, C/S and
FP compared with the other inputs.

5.5. Model construction using MLP

After developing and controlling several models with different
combinations of the input parameters, two MLP-based models
were selected and presented as the optimal models. Similar to
the MEP models, the predictor variables in the first MLP model
were C/S, BP, VMA and M/F; those of the second model were FP,
BP, VMA and M/F. For the development of ANN models, a script
was written in the MATLAB environment using Neural Network
Toolbox 5.1. The performance of an ANN model mainly depends
on the network architecture and parameter settings. For traditional
MLP, a single hidden layer network is sufficient to uniformly
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approximate any continuous and nonlinear function according to a
universal approximation theorem, demonstrated concurrently by
several researchers (e.g., Alavi, Gandomi, Mollahasani, et al.,
2010; Cybenko, 1989). Choice of the number of the hidden layers,
hidden nodes, learning rate, epochs and type of activation function
plays an important role in model construction. Hence, several MLP
network models with different settings for the mentioned charac-
ters were trained to reach the optimal configurations with desired
precision (Eberhart & Dobbins, 1990). Also, hyperbolic tangent sig-
moid and quasi-Newton back-propagation were respectively
adopted as the transfer function and training algorithm.

ANN toolbox in MATLAB randomly assigns the initial weights
and biases for each run each time (MathWorks Inc, 2007). These
assignments considerably change the performance of a newly
trained ANN even all the previous parameter settings and ANN
architecture are kept constant. This leads to extra difficulties in
the selection of optimal ANN architecture and parameter settings.
To overcome this difficulty the weights and biases were frozen
after the network was well trained and then the trained ANN mod-
els translated into explicit forms (Alavi, Gandomi, Mollahasani,
et al., 2010; Guzelbey et al., 2006; Tapkin et al., 2009). For brevity,
detailed explanations of the procedure used to convert the ANN
models into simple equations are not given. Relative importance
values of the various inputs of the proposed separate models were
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Fig. 14. Experimental versus predicted fl
calculated using Garson’s algorithm (Garson, 1991). According to
this algorithm, the input-hidden and hidden-output weights of
the trained ANN models are partitioned and the absolute values
of the weights are taken to calculate the relative importance of
the input variables.
5.5.1. The MLP-based formulation for the flow number of asphalt mix
The model architecture that gave the best results for the formu-

lation of the flow number in terms of C/S, BP, VMA and M/F was
found to contain:

One invariant input layer, with 4 (n = 4) arguments.
One invariant output layer with 1 node providing the value of
Log(Fn).
One hidden layer having 7(m = 7) nodes.

The explicit formulations of Fn is as follows:
LogðFnÞ ¼
2

1þ e
�2 Bhþ

Pm

j¼1
tanhðFjÞ�Wh

1j

� � � 1; ð13Þ
where,
1

2

2

3

3

4

1 2 3

(b)

L
og

 o
f 

P
re

di
ct

ed
 F

lo
w

 N
um

be
r

Log of Measured Flow Number

R = 0.973
MAE = 0.074

MEP, Eq. (11)

Test

1

2

2

3

3

4

1 2 3

(d)

L
og

 o
f 

P
re

di
ct

ed
 F

lo
w

 N
um

be
r

Log of Measured Flow Number

R = 0.970
MAE = 0.089

MEP, Eq. (12)

Test

ow number using the MEP models.



0.0

0.2

0.4

0.6

0.8

1.0

C/S                  BP (%)             VMA (%)            M/F         

MEP, Eq. (11) (a)

0.0

0.2

0.4

0.6

0.8

1.0

FP (%)              BP (%)             VMA (%)             M/F         

MEP, Eq. (12) (b)

Fig. 15. Frequency values of the input parameters.
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Fj ¼
Xn

k¼1

XnWi
kj þ Bias ¼ C

S
�Wi

1j þ BP�Wi
2j

þ VMA�Wi
3j þ

M
F
�Wi

4j þ Bi
j; j ¼ 1; . . . ;m; ð14Þ
where, Log(Fn), C/S, BP, VMA and M/F are the variables that were
normalized using the well-known linear normalization method
(Mollahasani, Alavi, Gandomi, & Rashed, in press). The input layer
weights (Wi), input layer biases (Bi), hidden layer weights (Wh)
and hidden layer bias (Bh) of the optimum MLP model are as
follows:

2 ½Wi� ¼

4:996 2:169 �5:524 �6:203
1:252 3:245 �1:117 �0:506
�17:136 �6:376 �13:213 2:522
�4:002 �7:173 5:358 2:561
�4:076 �2:410 5:885 6:841
1:200 �0:214 0:128 0:189
�4:451 5:719 �5:160 �2:354

2
666666666664

3
777777777775

m�n

ð15Þ

½Bi� ¼

0:636

�1:058

�7:437

0:631

�0:652

0:203

�2:354

2
666666666664

3
777777777775

m�1

ð16Þ

½Wh� ¼ ½1:328 � 0:299 0:202 � 0:158 1:215

� 0:818 0:122�1�m ð17Þ

½Bh� ¼ ½0:118� ð18Þ

The model architecture that gave the best results for the formula-
tion of the flow number in terms of FP, BP, VMA and M/F was found
to contain:

� One invariant input layer, with 4 (n = 4) arguments;
� One invariant output layer with 1 node providing the value of

Log(Fn).
� One hidden layer having 9 (m = 9) nodes.

The explicit formulations of Fn is as given below:

LogðFnÞ ¼
2

1þ e
�2 Bhþ

Pm

j¼1
tanhðFjÞ�Wh

1j

� � � 1 ð19Þ

where,
Fj ¼
Xn

k¼1

XkWi
kj þ Bias ¼ FP �Wi

1j þ BP �Wi
2j

þ VMA�Wi
3j þ

M
F
�Wi

4j þ Bi
j; i ¼ 1; . . . ;m ð20Þ

in which, Log(Fn), F, BP, VMA and M/F are the variables normalized
using the well-known linear normalization method (Mollahasani
et al., in press). The optimum weights matrices (Wi) and (Wh) and
bias vectors, (Bi) and (Bh), are presented below:

Wi
h i

¼

�1:038 �0:710 6:222 1:198
4:891 3:196 7:698 2:370
�6:851 �8:642 3:527 �0:037
�0:877 1:209 �1:414 �11:171
0:825 1:333 5:575 2:634
4:157 0:162 �0:863 0:442
5:884 2:924 �5:916 8:198
4:587 1:226 �4:565 3:085
�8:653 �4:402 3:920 0:876

2
66666666666666664

3
77777777777777775

m�n

; ð21Þ

Bi
h i

¼

�1:860
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4:613
�3:196
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�5:415
�0:016
�2:265

2
66666666666666664

3
77777777777777775

m�1

; ð22Þ

½Wh� ¼ �0:178 0:182 0:139 0:145 0:192 3:255 0:191 0:134 �0:134½ �1�m;

ð23Þ

Bh
h i

¼ �2:959½ �: ð24Þ

Both of the MLP models were built with a learning rate of 0.05 and
trained for 1000 epochs. A comparison of the actual and predicted
flow number for the training and testing data sets is shown in
Fig. 16. The relative importance values of the input parameters
are presented in Fig. 17. As it is seen, the flow number is more sen-
sitive to C/S, F and VMA in comparison with the other effective
parameters.
5.6. Model construction using regression analysis

In the conventional material modeling process, regression anal-
ysis is an important tool for building a model. In this study, a mul-
tivariable least squares regression (MLSR) (Ryan, 1997) analysis
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was performed to have an idea about the predictive power of the
MEP and MLP techniques, in comparison with a classical statistical
approach. The LSR method is extensively used in regression analy-
sis primarily because of its interesting nature. LSR minimizes the
sum-of-squared residuals for each equation, accounting for any
cross-equation restrictions on the parameters of the system. If
there are no such restrictions, this technique is identical to esti-
mating each equation using single-equation ordinary least squares.
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Fig. 17. Relative importance
The LSR models were developed using the same input variables as
MEP and MLP. Eviews software package (Maravall & Gomez, 2004)
was used to perform the regression analysis.

5.6.1. The MLSR-based formulation for the flow number of asphalt mix
The formulations of the flow number, Fn, in terms of C/S, FP(%),

BP(%), VMA(%), and M/F for the best result by the MLSR analysis are
as given below:
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of the input parameters.
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LogðFnÞ ¼ �0:4893
C
S
� 0:0042BP� 0:1511VMA

� 0:0639
M
F
þ 5:7907; ð25Þ
LogðFnÞ ¼ 0:1200FPþ 0:05089BP� 0:0626VMA

þ 0:0516
M
F
þ 2:1584: ð26Þ
6. Comparison of the rutting potential predictive models

As described above, four different formulas were obtained for
the assessment of the flow number of asphalt mixtures by means
of MEP and MLP. Overall performance of the MEP, MLP and
MLSR-based models on the whole of data are summarized in
Table 6. Comparisons of the flow number predictions obtained by
these models are also visualized in Fig. 18. No rational model to
predict the flow number of asphalt mixes has been developed yet
that would encompass the influencing variables considered in this
Table 6
Overall performances of the proposed models for flow number prediction.

Model Performance

R MAE

MEP, Eq. (11) 0.954 0.091
MEP, Eq. (12) 0.974 0.071
MLP, Eq. (13) 0.965 0.166
MLP, Eq. (19) 0.990 0.123
MLSR, Eq. (25) 0.920 0.117
MLSR, Eq. (26) 0.932 0.120
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Fig. 18. A comparison of the ratio between the experimental a
study. Therefore, it was not possible to conduct a comparative
study between the results of this research and those of previous
studies.

Comparing the performance of the proposed relationships, it
can be seen from Figs. 15 and 16, and Table 6 that Eq. (19) of
MLP has produced the best (higher) R values on the training, test-
ing and whole of data. The best (lowest) MAE values on the training
and entire database are provided by Eq. (12) evolved by MEP. Con-
sidering the MAE values on the testing data, Eq. (11) of MEP per-
forms superior than the other models. The equations obtained by
means of the MLP method are very complex. These models are
appropriate to be used as a part of a computer program or via
spreadsheet programming. On the other hand, the MEP-based
equations are really short, simple and can be used for routine de-
sign practice via hand calculations. In general, the MEP and MLP-
based formulas perform superior than the MLSR models developed
with the same variables as inputs. Overall, the models which have
taken into account the effects of FP as input variable outperform
those using C/S. Although most of the proposed regression-based
models yield good results for the current database, empirical mod-
eling based on statistical regression techniques has significant lim-
itations. Most commonly used regression analyses can have large
uncertainties. It has major drawbacks pertaining idealization of
complex processes, approximation and averaging widely varying
prototype conditions (Alavi, Ameri, et al., 2010).
7. Parametric analysis

For further verification of the models, a parametric analysis was
performed in this study. The main goal is to find the effect of each
parameter on the flow number (Fn). Fig. 19 presents the predicted
values of the flow number obtained by the proposed MEP and
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Fig. 19. Parametric analysis of the flow number in the MEP and MLP-based models.
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MLP-based correlations as a function of each parameter. The ten-
dency of the Fn predictions to the variations of C/S, FP (%), BP (%),
VMA (%), and M/F can be determined according to these figures.

As can be seen in Fig. 19(a) and (b), Fn continuously decreases
due to increasing C/S and increases with increasing FP. This is an
expected case from a pavement engineering viewpoint. A designer
can select various aggregate properties to give an asphalt mixture
with high or low Marshall stability. Any material that can stiffen an
asphalt mixture will also increase the Marshall stability. It is well
known that increase in the fine aggregate and filler content will
stiffen the total asphalt mixture, leading to higher Marshall stabil-
ity values and better resistance to the permanent deformation. This
is mainly due to the fact that the air void between the aggregates is
filled by the fine aggregate and filler and consequently, a more
integrate grading will be obtained. The fine aggregate and filler
provide the load spreading characteristics of the mixture. The
above results are in acceptable agreement with the obtained
experimental trends. As shown in Figs. 6–8, the upper limits of
the grading No. 3, 4 and 5 with higher amount of the fine particles
provide higher flow number and lower rutting potential compared
with the middle and lower limits of each grading with lower fine
particles.

In Fig. 19(c), one can see that Fn initially increases when BP in-
creases. It seems that the MEP and MLP models are capable of cap-
turing the variations of Fn with increasing BP up to the optimum
binder content, which is a growing trend as previously shown in



M.R. Mirzahosseini et al. / Expert Systems with Applications 38 (2011) 6081–6100 6097
Fig. 6. As the VMA values increase, the specimens become less
resistant to the applied loads. Therefore, from the nature of asphalt,
accumulated strains at the end of repeated creep test tend to in-
crease resulting in decreased Fn. This can be attributed to the in-
crease of the bitumen percent in the sample. In general, increase
in the bitumen percent corresponds to increase in the rutting po-
tential and softening of the sample. This is verified completely by
the proposed MEP and MLP models as shown in Fig. 19(d). The re-
sults of the experimental study and also several other studies indi-
cate that resistance against the permanent deformation increases
as VMA decreases (e.g., Lavin, 2003; Pardhan, 1995; Sousa et al.,
1991).

As can be seen in Fig. 19(e), the effect of M/F on the rutting po-
tential of asphalt mixtures is more complex than the effect of other
variables. M/F is the ratio of stability to flow and represents the ra-
tio of load to deformation. This ratio may be used to give an indi-
cator of the mixture stiffness while specifying a minimum flow
value may prevent mixtures susceptible to embrittlement being
used. Based on the previous studies, a higher M/F value indicates
a high stiffness mix with a greater ability to spread the applied
load. Therefore, the pavements being more resistant to the perma-
nent deformation are obtained (Hinislıoglu & Agar, 2004; Lavin,
2003; Nicholls, 1998; Nijboer, 1957; Zoorob & Suparma, 2000).
However, there is no clear consensus in the literature about the ef-
fect of M/F increment on the rutting resistance of asphalt mixtures.
Recently, Tayfur, Ozen, and Aksoy (2007) investigated the rutting
performance of asphalt mixtures containing polymer modifiers. It
was found that M/F may not be a good indicator for measuring of
the permanent deformation. The results of the parametric study
for M/F obtained by MEP, Eq. (11) and MLP, Eq. (19) indicate that
Fn increases with increasing M/F. The relevant results for Eq. (12)
of MEP indicate that Fn is negatively correlated with M/F. The
results for Eq. (13) of MLP show that Fn initially decreases when
M/F increases up to about 3.5 and thereafter it starts increasing.
8. Conclusions

In this study, a robust variant of GP, namely MEP and MLP of
ANNs were utilized to assess the flow number of asphalt-aggregate
mixtures. Four different correlations were developed for the flow
number prediction using different combinations of the affecting
parameters. On the basis of an extensive trial study and literature
review, the coarse aggregate to fine aggregate ratio (C/S), filler (FP),
bitumen (BP), voids in mineral aggregate (VMA), and Marshall quo-
tient (M/F) were identified to be used as the predictor variables.
Several uniaxial dynamic creep tests were carried out on standard
Marshall specimens in the laboratory environment to develop a
Table 7
The repeated creep test results on the asphalt samples.

Test No. C(%) S(%) F(%) BP(%)

1 55 38 7 4
2 55 38 7 4
3 55 38 7 4.5
4 55 38 7 4.5
5 55 38 7 5
6 55 38 7 5
7 55 38 7 5
8 55 38 7 5.5
9 55 38 7 5.5
10 55 38 7 5.5
11 55 38 7 6
12 55 38 7 6
13 55 38 7 6
14 68 28 4 4
comprehensive database. The MEP and MLP-based correlations
were benchmarked against the multivariable linear regression
models. The following conclusions can be derived from the results
presented in this research:

(i) It was observed that the MEP and MLP-based correlations
are capable of predicting the flow number of asphalt mix-
tures with high accuracy. Due to nonlinearity in rutting
behavior, the nonlinear MEP and MLP models produced bet-
ter outcomes over the developed linear regression-based
models.

(ii) The proposed models simultaneously take into account the
role of several important factors representing the rutting
behavior. Better performance of the correlations developed
using FP instead of C/S implies the necessity of using FP for
the performed MEP and MLP analyses.

(iii) The developed generalized correlations can be used for rou-
tine design practice in that they were derived from tests on
mixtures with a wide range of aggregate gradation and prop-
erties. The MEP-based formulas are much simpler than the
MLP equations.

(iv) A major advantage of MEP and MLP for determining the flow
number lies in their powerful ability to model the mechan-
ical behavior without any prior assumptions.

(v) The contribution of each input parameter in the MEP and
MLP models was evaluated through a sensitivity analysis.
C/S, F and VMA were found to be more effective to explain
the variations of the flow number compared with the other
mixture properties.

(vi) In the MEP and MLP-based modeling, the effects of different
aggregate gradation properties are concurrently incorpo-
rated into the model development and analyzed. Hence,
unlike experimental design procedures, there is no need to
consider different grading systems such as upper, middle
and lower limits.

(vii) By employing the MEP and MLP approaches, the flow num-
ber can accurately be estimated without carrying out sophis-
ticated laboratory tests with UTM or any similar testing
equipment.

(viii) As more data become available, including those for other
types of asphalt mixtures and test conditions, the proposed
models can be improved to make more accurate predictions
for a wider range.
Appendix A

See Table 7.
Va(%) VMA(%) M(kN) F(mm) Fn

7.69 16.30 11.74 3.27 260
7.52 16.16 9.49 2.90 350
5.60 15.45 11.58 3.40 300
5.67 15.51 11.42 3.72 310
4.55 15.54 11.38 3.73 310
4.08 15.12 12.88 3.80 340
3.93 14.99 15.30 3.68 380
3.86 15.95 12.70 4.75 320
2.89 15.10 12.49 4.23 265
3.83 15.92 12.60 3.66 350
3.90 16.99 11.44 4.32 280
4.39 17.42 11.30 3.95 240
2.17 15.50 11.20 4.73 250
5.21 14.05 11.52 3.28 170

(continued on next page)



Table 7 (continued)

Test No. C(%) S(%) F(%) BP(%) Va(%) VMA(%) M(kN) F(mm) Fn

15 68 28 4 4 5.36 14.19 10.80 3.30 160
16 68 28 4 4.5 4.60 14.54 12.40 3.76 190
17 68 28 4 4.5 4.34 14.31 12.35 3.64 160
18 68 28 4 5 3.42 14.52 11.51 4.38 200
19 68 28 4 5 3.64 14.72 11.39 4.16 210
20 68 28 4 5 3.87 14.92 11.59 4.11 150
21 68 28 4 5.5 3.53 15.65 10.35 4.30 140
22 68 28 4 5.5 2.93 15.13 10.74 4.32 200
23 68 28 4 5.5 3.28 15.43 9.88 4.25 180
24 68 28 4 6 1.71 15.09 12.90 4.63 160
25 68 28 4 6 2.14 15.46 8.99 4.44 150
26 68 28 4 6 4.56 17.55 5.02 4.35 160
27 81 18 1 4 4.28 13.20 8.57 4.56 38
28 81 18 1 4 4.68 13.56 7.96 3.48 40
29 81 18 1 4 4.89 13.74 8.86 4.32 38
30 81 18 1 4.5 4.24 14.20 9.38 4.16 40
31 81 18 1 4.5 3.68 13.70 9.86 4.20 37
32 81 18 1 4.5 3.74 13.76 9.07 4.48 38
33 81 18 1 5 3.86 14.90 8.31 4.65 36
34 81 18 1 5.5 2.05 14.33 6.52 4.46 24
35 81 18 1 6 3.04 16.22 2.73 4.51 22
36 42 48 10 4.5 8.77 18.29 9.12 3.11 510
37 42 48 10 4.5 8.69 18.22 8.45 2.33 340
38 42 48 10 4.5 8.43 17.99 8.67 2.10 400
39 42 48 10 5 6.31 17.10 12.51 2.60 420
40 42 48 10 5 6.22 17.03 11.43 2.81 460
41 42 48 10 5 6.04 16.86 10.69 2.68 450
42 42 48 10 5.5 4.69 16.69 12.25 2.94 440
43 42 48 10 5.5 4.72 16.71 12.99 3.01 500
44 42 48 10 5.5 4.19 16.25 12.74 2.89 480
45 42 48 10 6 3.82 16.94 12.79 3.61 450
46 42 48 10 6 4.45 17.48 11.85 2.60 420
47 42 48 10 6 3.95 17.05 12.96 3.26 500
48 42 48 10 6.5 3.80 17.92 12.55 3.64 480
49 42 48 10 6.5 3.88 17.98 12.26 3.20 440
50 57 37 6 4.5 6.52 16.26 9.85 3.04 290
51 57 37 6 4.5 6.00 15.80 11.32 3.32 260
52 57 37 6 4.5 6.50 16.25 10.64 2.65 230
53 57 37 6 5 4.43 15.42 13.64 3.42 340
54 57 37 6 5 4.69 15.65 10.50 2.82 300
55 57 37 6 5.5 3.83 15.91 11.17 3.63 370
56 57 37 6 5.5 4.18 16.22 11.93 3.39 380
57 57 37 6 5.5 4.08 16.14 10.23 3.69 380
58 57 37 6 6 3.70 16.81 11.42 4.16 350
59 57 37 6 6 2.69 15.94 10.29 3.24 370
60 57 37 6 6.5 3.02 17.23 10.16 3.82 320
61 57 37 6 6.5 2.95 17.17 10.45 3.68 280
62 72 26 2 4.5 5.38 15.24 10.20 3.42 60
63 72 26 2 4.5 5.06 14.95 9.80 2.54 48
64 72 26 2 4.5 5.43 15.29 9.69 3.14 80
65 72 26 2 5 4.29 15.29 10.90 3.85 65
66 72 26 2 5 4.24 15.25 11.26 3.42 75
67 72 26 2 5 4.23 15.24 11.53 3.45 60
68 72 26 2 5.5 3.61 15.72 10.76 3.81 44
69 72 26 2 5.5 3.70 15.80 10.53 3.96 80
70 72 26 2 5.5 3.73 15.82 10.40 4.03 60
71 72 26 2 6 3.05 16.25 9.35 4.09 65
72 72 26 2 6 3.11 16.30 9.30 4.29 52
73 72 26 2 6.5 2.82 17.06 7.90 4.52 60
74 72 26 2 6.5 3.16 17.34 8.39 4.39 44
75 72 26 2 6.5 3.02 17.23 8.10 4.60 50
76 33 57 10 5 8.43 18.98 4.61 2.55 320
77 33 57 10 5 8.38 18.94 4.34 2.35 320
78 33 57 10 5 8.31 18.87 5.02 2.83 300
79 33 57 10 5.5 6.60 18.35 6.81 2.73 340
80 33 57 10 5.5 6.36 18.15 6.32 2.72 300
81 33 57 10 5.5 6.47 18.24 6.57 2.73 380
82 33 57 10 6 4.97 17.93 9.67 2.56 380
83 33 57 10 6 5.27 18.19 9.14 2.81 340
84 33 57 10 6 5.03 17.99 10.24 2.91 320
85 33 57 10 6.5 3.73 17.86 11.25 2.89 400
86 33 57 10 6.5 3.76 17.88 13.03 3.01 400
87 33 57 10 6.5 4.43 18.46 11.96 3.45 380
88 33 57 10 7 3.28 18.46 8.36 3.10 360
89 33 57 10 7 3.96 19.04 7.55 3.30 370
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Table 7 (continued)

Test No. C(%) S(%) F(%) BP(%) Va(%) VMA(%) M(kN) F(mm) Fn

90 33 57 10 7 3.70 18.82 8.93 3.49 350
91 50.5 43.5 6 5 7.48 18.13 9.25 2.80 180
92 50.5 43.5 6 5 7.30 17.96 9.52 3.21 160
93 50.5 43.5 6 5 7.62 18.25 9.31 2.88 210
94 50.5 43.5 6 5.5 5.79 17.63 10.98 3.36 270
95 50.5 43.5 6 5.5 5.50 17.38 10.72 2.91 230
96 50.5 43.5 6 6 4.01 17.08 12.88 3.60 270
97 50.5 43.5 6 6 4.48 17.49 9.87 3.12 300
98 50.5 43.5 6 6 4.06 17.13 12.62 3.11 220
99 50.5 43.5 6 6.5 3.70 17.81 10.86 3.15 240
100 50.5 43.5 6 6.5 3.68 17.79 10.61 3.52 260
101 50.5 43.5 6 6.5 3.61 17.74 11.44 3.49 260
102 50.5 43.5 6 7 3.81 18.89 9.71 3.50 250
103 50.5 43.5 6 7 3.40 18.54 9.93 3.32 220
104 50.5 43.5 6 7 3.14 18.32 9.89 3.69 240
105 68 30 2 5 5.35 16.22 10.03 3.48 50
106 68 30 2 5 5.53 16.38 9.52 2.64 40
107 68 30 2 5 5.47 16.32 8.66 3.55 45
108 68 30 2 5.5 4.67 16.64 10.11 3.21 45
109 68 30 2 5.5 4.38 16.38 8.89 2.64 50
110 68 30 2 5.5 4.36 16.36 9.83 4.02 50
111 68 30 2 6 3.74 16.83 9.34 3.29 55
112 68 30 2 6 3.42 16.55 9.57 3.30 60
113 68 30 2 6 4.00 17.05 9.71 3.40 55
114 68 30 2 6.5 3.46 17.59 9.12 3.48 50
115 68 30 2 6.5 3.36 17.51 9.22 3.25 60
116 68 30 2 6.5 3.02 17.21 9.55 3.36 60
117 68 30 2 7 3.36 18.49 9.01 3.51 50
118 68 30 2 7 2.74 17.97 8.24 3.37 45
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