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Abstract

The result of the program encoded into a Genetic
Programming (GP) tree is usually returned by the root
of that tree. However, this is not a general strategy. In
this paper we investigate a new variant where the best
subtree is chosen to provide the solution of the problem.
The other nodes (not belonging to the best subtree) are
deleted. This will reduce the size of the chromosome in
cases when its best subtree is different from the entire
tree. We have tested this strategy on a wide range of
even-n-parity problems. Numerical experiments have
shown that the proposed approach performs better com-
pared to standard GP.

1 Introduction

The problem of designing digital circuits by using
evolutionary techniques has been intensely analyzed
in the recent past [5, 14, 21]. Genetic Programming
(GP) and its variants were mainly used for this purpose
[13, 7]. Numerical results have shown that GP-based
techniques were able to evolve digital circuits better
than those designed by human experts.

In this paper we expand a new variant of Genetic
Programming, proposed in [16], where the output is not
given by the root of the tree as in the case of standard
GP. Instead, the best subtree is chosen for providing
the result of a chromosome. This is why this variant
of GP is called Best SubTree Genetic Programming
(BSTGP).

There are two very important features which make
BSTGP different from standard GP:

• The best subtree is selected for providing the so-
lution of the problem. This is different from the
standard GP where the fitness of a chromosome
(tree) is given by its root node.

• Nodes not belonging to the best subtree are
deleted. In this way the BSTGP trees may be
smaller compared to the GP trees.

All these operations are performed during the fitness
computation process. All other elements of a standard
GP algorithm [7] remain unchanged.

This approach has been tested against several even-
n-parity problems. Numerical results have shown that
this variant of GP performs very well compared to the
standard Genetic Programming.

The paper is organized as follows: Related work is
briefly reviewed in Section 2. The BSTGP approach
is described in Section 4. The most important aspect
is given in Section 4.1 where the fitness assignment
process is detailed. The test problems are briefly in-
troduced in Section 5.1. The results of the numeri-
cal experiments are presented in Section 5.3. Section
6 discusses the strengths and weaknesses of the pro-
posed approach. Section 7 indicates a list of possible
improvements required for solving higher instances of
the problem. Finally, Section 8 concludes our paper
and summarizes the further work directions.

2 Related work

Different GP techniques employ different strategies
for selecting the sequence of instructions which pro-
vides the solution of the problem.

The most prominent example is Cartesian Genetic
Programming (CGP) [15] where the output node is



evolved like all other genes. This means that the graph
providing the solution might not contain all nodes of
the CGP chromosome.

Linear Genetic Programming (LGP) has also been
subject to code efficientizations. In [3] the authors have
removed the instructions that do not participate to the
solution (also called introns). Note that this is different
from our approach since, in our case, all nodes of the
tree are effective [3], but not all of them belong to the
best subtree.

Introns removal is a common operation in GP [1, 11,
17]. Many papers have investigated this issue. Some
researchers have argued that introns are beneficial to
GP because they protect the code from the destructive
effect of crossover.

3 Even-n-parity problem

Our aim is to find a Boolean function that satis-
fies a set of fitness cases. The particular function that
we want to find is the Boolean even-n-parity function.
This function has n Boolean arguments and it returns
T (True) if an even number of its arguments are T .
Otherwise the even-n-parity function returns F (False)
[7, 20]. According to [7] the Boolean even-n-parity
functions appear to be the most difficult Boolean func-
tions to detect via a blind random search.

The problem of evolving Boolean functions has been
intensively analyzed in the past [4, 6, 7, 8, 20].

In applying a Genetic Programming technique (in
particular BSTGP technique) to the even-n-parity
function of n arguments, the terminal set T consists
of the k Boolean arguments d0, d1, d2, . . ., dn−1.

The function set F usually consists of all two-
argument primitive Boolean functions (also called gates
[14]). Using this complete set we can obtain solutions
of the even-n-parity problem by spending less compu-
tational resources [20].

Koza [7] has performed a detailed analysis of the
even-n-parity problem in his first book about the
standard GP paradigm [7]. Later, new results were
obtained when the Automatically Defined Functions
(ADFs) [8] have been discovered. In both cases only
four Boolean functions (F = {AND, OR, NAND,
NOR}) were used.

Koza has established that the solving medium size
instances of the parity problems using standard GP
without ADFs is computationally expensive. He did
not obtain a result for values of n > 5. However, better
results were obtained when ADFs were used [8] (up to
even-11-parity problem).

If we extend this set by including other Boolean
functions (such as EQ and XOR) we can obtain solu-

tions for larger instances. For instance, in [20] Genetic
Programming using an extended set of 16 function sym-
bols has been used for solving up to even-22-parity
problems. Note that in this case a parallel variant of
GP and a sub-symbol node representation were used
on a network of computers structured in client-server
architecture.

Replicating the Koza’s studies, Chellapilla [4] has
used Evolutionary Programming [24] for solving these
problems. He has omitted the crossover operator and
has used instead a variety of mutation operators.

Gathercole and Ross [6] have used GP without
ADFs and a special fitness function for evaluating a
Boolean function. The individual’s fitness score is
based on how many cases remain uncovered in the or-
dered training set after the individual quality exceeds
an error limit. If this threshold is reached, the remain-
ing, untested, cases are also considered as misclassifi-
cations. Their methods has provided better results (in
terms of function evaluations) than the standard GP
technique, but just for several problems (from Even 3
up to Even 7).

4 Best Subtree GP

It can be easily seen that each tree has a number of
subtrees equal to the number of nodes. For instance,
the tree depicted in Figure 1 has 11 subtrees. The
distinct ones are depicted in Figure 2.

Usually the result of a GP tree is given by its root
node (subtree ST7 from Figure 2). We have already
seen in Section 2 that this is not a general strategy.
Various GP techniques choose different subtrees for en-
coding the solution.

In the approach proposed in [16] it is not chosen a
fixed subtree for providing the solution. Instead, it is
computed the quality of each subtree and it is selected
the best of them for providing the solution of the prob-
lem.

More than that, after fitness computation all nodes
not belonging to the best subtree are deleted. In this
way the size of the entire chromosome might decrease
which will lead to a faster search process.

Remark By best subtree we understand the subtree
which has the best fitness. For instance, in the case of
even-n-parity problem the fitness has to be minimized.
Thus the best subtree is the one with the smallest fit-
ness.

4.1 Fitness assignment

We focus our explanation on even-n-parity prob-
lems.
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The set of fitness cases for an even-n-parity prob-
lem consists of the 2n combinations of the n Boolean
arguments. The fitness of an expression encoded into a
tree or a subtree is the sum, over these 2n fitness cases,
of the Hamming distance (error) between the returned
value by the current expression and the correct value
of the Boolean function. Since the standardized fitness
ranges between 0 and 2n, a value closer to zero is better
(since the fitness is to be minimized).

Finding the best subtree of a tree is an easy and
inexpensive task. We know that when the fitness of
an expression (encoded into a GP tree) is computed,
the values of all expressions (encoded by the subtrees
of the original tree) are also computed. This opera-
tion is done in O(m) steps, where m is the number of
nodes of the GP subtree. Thus, computing the value of
an expression and of all expressions (encoded by sub-
trees) requires the same number of operations as the
computation of the value of the entire expression.

Once we have the values of each sub-expression it
is very easy to compute their fitness. We only have
to take the difference (in absolute value) between the
actual and expected output and then we sum these
results for all fitness cases.

For finding the best subtree we employ a bottom-
up approach: first of all we compute the fitness of
the smallest expressions (subtrees) and then we com-
pute the fitness of increasingly bigger sub-expressions
(trees). The last expression whose fitness is computed
is the one encoded by the entire tree.

Note that this bottom up strategy is identical with
that of computing the value of an expression encoded
into a tree.

The lowest fitness indicates which the best subtree
of the chromosome is. Therefore, that subtree will be-
come the new chromosome. All other nodes will be
deleted.

4.2 Example

Let’s consider an even-n-parity problem with two
inputs (n = 2) and, therefore, with 22 fitness cases (see
Table 1) and a chromosome with 5 node levels (depicted
in Figure 1). We compute the fitness of each subtree
(Figure 2) as described in section 4.1 and we cache the
results. A possible order for fitness computation is the
following: ST1, ST2, ST3, ST4, ST5, ST6, ST7. Note
that there are more than one order in which the fitness
can be computed. For instance ST2, ST1, ST4, ST3,
ST5, ST6, ST7 is also a valid order.

Fitness values for each subtree are given in Table 2.
In this example ST1, ST2 and ST5 have the same

best quality. Therefore, each of them could become

Table 1. Four fitness cases for even-2-parity
problem

Fitness cases a b f(a,b)
i F F T
ii F T F
iii T F F
iv T T T

OR

OR

AND

AND

AND

Figure 1. A GP chromosome en-
coding the Boolean expression
(((a OR b) AND b) OR a) AND (a NAND b).
The gray-filled nodes form the best fitted
expression encoded in this tree.
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Figure 2. All possible distinct subtrees of the
GP chromosome from Figure 1. Gray-filled
nodes belong to the best subtree.
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Table 2. Fitness of each subtree. First of
all the evaluation results for each fitness
case are computed. The fitness is given
by the Hamming distance between the re-
turned value and he correct value for all fit-
ness cases.

Fitness
case

ST1 ST2 ST3 ST4 ST5 ST6 ST7

i F F F T F F F
ii F T T T T T T
iii T F T T F T T
iv T T T F T T F

2 2 3 3 2 3 4

the new chromosome. In this case we pick one of them
randomly (for instance ST5). All other nodes of the
original tree are deleted.

5 Experiments

Several numerical experiments with GP and BSTGP
are carried out in this section.

5.1 Test problems

Several test problems are chosen for these experi-
ments:

• Even 3 - The even-3-parity problem has three
Boolean inputs and one Boolean output. The
number of fitness cases is 23 = 8;

• Even 4 - The even-4-parity problem has four
Boolean inputs and one Boolean output. The
number of fitness cases is 24 = 16;

• Even 5 - The even-5-parity problem has five
Boolean inputs and one Boolean output. The
number of fitness cases is 25 = 32;

• Even 6 - The even-6-parity problem has six
Boolean inputs and one Boolean output. The
number of fitness cases is 26 = 64;

• Even 7 - The even-7-parity problem has seven
Boolean inputs and one Boolean output. The
number of fitness cases is 27 = 128;

• Even 8 - The even-8-parity problem has eight
Boolean inputs and one Boolean output. The
number of fitness cases is 28 = 256;

• Even 9 - The even-9-parity problem has nine
Boolean inputs and one Boolean output. The
number of fitness cases is 29 = 512;

• Even 10 - The even-10-parity problem has ten
Boolean inputs and one Boolean output. The
number of fitness cases is 210 = 1024.

We have limited our experiments to this size because
we wanted to explore the power of BSTGP method
compared to standard GP. Note that results for higher
instances of the even-n-parity problem can be obtained
by both GP and BSTGP if we employ the follow-
ing features: sub-symbolic node representation [20],
smooth genetic operators [18], parallel implementation
in which GP sub-populations or demes are distributed
over a number of workstations [19].

These issues will be discussed in section 7.

5.2 Setup for GP methods

The same function set has been used for both GP
methods which contains all 16 Boolean functions with
two arguments. Terminal set T consists of the problem
inputs.

We used a steady-state evolutionary model as un-
derlying mechanism for our implementations of all GP
methods. The algorithm starts by creating a random
population of individuals. The following steps are re-
peated until a termination criterion is met: Two par-
ents are selected using a standard selection procedure.
The parents are recombined in order to obtain two off-
spring which are then considered for mutation. The
best offspring O replaces the worst individual W in
the current population if O is better than W .

The following standard genetic operations are per-
formed [7]:

• initialization - ramped half and half. No more than
9 levels have been used for initializing each chro-
mosome;

• selection - binary tournament;

• crossover - both models use a one-cutting point
crossover with a given probability (pc). Hav-
ing two parent trees, we randomly chosen a one-
cutting point in the first parent, another cutting-
point in the second parent and we exchanged the
subtree rooted at the cutting-point in first chromo-
some with the sub-tree rooted at the cutting-point
in the second individual. Two new individuals are
obtained by crossover;
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• mutation - each node of a chromosome is changed
with a given probability (pm). Terminals are mu-
tated into terminals and functions are mutated
into other functions with the same arity. In this
way the size of the tree is not changed.

Other parameter settings for both methods are given
in Table 3. Note that, in the steady-state model, a gen-
eration is considered as being complete when Number
of generations new individuals are generated.

Table 3. Parameters used by GP and BSTGP
for even- n-parity problems

Parameter Value

Population size

Even 3 50
Even 4 75
Even 5 200
Even 6 100
Even 7 200
Even 8 300
Even 9 200
Even 10 300

Number of
generations

Even 3 50
Even 4 75
Even 5 100
Even 6 100
Even 7 100
Even 8 200
Even 9 200
Even 10 500

Tournament size 2
Crossover probabil-
ity

0.8

Maximal initial
depth

9

Mutation probabil-
ity

0.1

5.3 Assessing the performance of the
BSTGP algorithm

For assessing the performance of the BSTGP algo-
rithm a very important statistic is of high interest: the
computational effort for both algorithms.

Koza [7] suggested the computation of the number of
chromosomes, which would have to be processed to give
a certain probability of success. To calculate this figure
one must first calculate the cumulative probability of
success P (M ; i), where M represents the population
size, and i the generation number. The value R(z)

represents the number of independent runs required for
a probability of success (given by z) at generation i.

The quantity I(M ; z; i) represents the minimum
number of chromosomes which must be processed to
give a probability of success z, at generation i. The
formula are given by the equations (1), (2) and (3).
Ns(j) represents the number of successful runs at gen-
eration j, and Ntotal, represents the total number of
runs:

P (M, i) =

∑i
j=1 Ns(j)
Ntotal

(1)

R(z) =
[

log(1− z)
log(1− P (M, i))

]
(2)

I(M, i, z) = M × i×R(z) (3)

Note that when z = 1.0 the formula (2) and (3) are
invalid (all runs successful). In the graphs of Figure 3
z takes the value 0.99.

The curves representing the computational effort
needed by BSTGP and GP algorithms to solve all the
test problems are depicted in Figure 3.

Figure 3 contains two graphs which together show
the relationship between the choice of the number of
generations to be run and the total number of individ-
uals that need to be processed, I(M, i, z), in order to
yield a solution to every test problem with 99% prob-
ability for a population of different sizes (see Table 3).
The horizontal axis applies to both of these overlaid
graphs and runs between 0 and Number of generations
from Table 3. The rising curve is the cumulative prob-
ability P (M, i) of success and is scaled by the left ver-
tical axis running between 0% and 100%. The falling
curve shows, by generation, the total number of indi-
viduals I(M, i, z) that must be processed in order to
solve the problem with z = 99% probability, and is
scaled by the right vertical axis. Both curves from each
graph are based on the average results over 30 runs.

Summarized results at the end of the search process
are given in Table 4.

Table 4 shows that a BSTGP technique is able to
find the solutions in more runs compared to GP for all
test problems. More than that, the average number of
generations needed for obtaining a solution is smaller
in BSTGP case (in 7 out of 8 cases).

6 Strenghts and weaknesses

The advantages and weaknesses of the proposed
method are discussed in this section.
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Figure 3. The computational effort and the cumulative probability of success for the test problems.
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Table 4. Results obtained by BSTGP and GP for all test problems. For each problem is given the
success rate and the average number of generations that are needed for obtaining a solution (only
the successful runs are counted here). The results are averaged over 30 runs.

Problem Success rate Avg no of generations
BSTGP GP BSTGP GP

Even 3 95% 89% 12.93 15.39
Even 4 100% 77% 28.23 40.50
Even 5 100% 97% 36.07 35.93
Even 6 70% 63% 71.03 76.53
Even 7 67% 43% 76.47 89.50
Even 8 93% 80% 108.27 118.70
Even 9 43% 33% 175.17 185.33
Even 10 90% 83% 270.97 335.23

6.1 Strenghts

One of the benefits of BSTGP is the reduced size
of trees compared to the standard GP. This leads to a
faster search in the solution’s space.

Keeping only the best subtree might be an effective
way of fighting bloat [2, 10, 12].

6.2 Weaknesses

There are some small difficulties related to the pro-
posed method. A (small) extra amount of memory is
required for storing the fitness of each subtree. This
space is equal to the number of subtrees of each tree.
Than, there is a small overhead when the nodes not be-
longing to the best subtree are deleted. This overhead
is not significant due to the vectorial representation of
trees [9].

7 Discussions and further work

Our numerical experiments have been focused on
comparing BSTGP with standard GP. This is why we
have run only the instances which have a resonable
running time on a personal computer.

We have not been interested in obtaining solutions
for higher-order instances of the problem. However,
the proposed method could be improved and tested for
higher instances by implementing some other features:
sub-symbolic node representation [20], smooth genetic
operators [18].

Poli [20] suggested another set of improvements
which can help us to obtain solution for higher-order
instances of the even-n-parity problem:

• a parallel implementation in which the sub-

populations or demes are distributed over a num-
ber of workstations [20],

• involving sub-machine code GP [19] - a technique
which allows the parallel evaluation of 32 or 64
fitness cases per program execution.

• variation of one or more of the parameters (as
crossover or mutation probability or the initial
maximal depth of a tree). This will help us to
optimise performance for a specific value of n [20].
However, finding optimal values for these parame-
ters requires multiple trials.

These improvements will be implemented in the
BSTGP technique in the near future.

8 Conclusions

A new way of selecting the subtree providing the
solution of GP chromosomes was investigated in this
paper.

Instead of using the root of the tree as solution
provider, any other subtree was seen as a potential so-
lution of the problem. There is neither practical nor
theoretical evidence that one of these subtrees is bet-
ter than the others. Moreover, Wolpert and McReady
[23, 22] proved that we cannot use the search algo-
rithm’s behaviour so far for a particular test function
to predict its future behaviour on that function. Thus,
fixing the subtree which provides the solution might
not be the best strategy to follow. This is why we have
designed a dynamic strategy for selecting the subtree
providing the solution of the problem.

Nodes not belonging to the optimal subtree are re-
moved. This has improved the efficiency of the method.

Several numerical experiments have been performed
by using eight small instances of the even-n-parity
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problems (from Even 3 up to Even 10). Results have
shown the effectiveness of our approach.

In this paper we have analyzed the performance of
the BSTGP technique only for even-n-parity problems.
In order to have a complete assessment of the method
we must test it against other problems (such as regres-
sion or classification problems). We also have to embed
this strategy into other variants of Genetic Program-
ming in order to see if it is a general one or it works
only due to the particularities of the tree-based GP.
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